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Abstract—This paper presents an energy-efficient solution to
overcome packet loss in Wireless Sensor Networks (WSNs) by
adding seed-based Random Linear Network Coding to MQTT for
Sensor Networks (MQTT-SN). Whereas most sensors integrated
in common WSN devices consume little energy, using the radio
is costly. To increase battery lifetime, devices try to minimize
their radio uptime, while still satisfy timeliness and reliability
of delivered data. The proposed approach uses an optimized
seed-based intrasession Network Coding scheme for Forward
Error Correction to shorten the sensor node’s radio uptime,
reducing its power consumption. The presented approach is
conform to the MQTT-SN specification and, thus, interoperable
with existing systems. Since the implementation is based on the
application layer, it is seamlessly deployable via Over-The-Air-
Programming. The presented evaluation is based on collected
traces from a real-world WSN deployment in the context of
Precision Agriculture. Radio uptime and power consumption
measurements in an experimental testbed confirm the achieved
benefits.

I. INTRODUCTION
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The impact of WSNs is continuously growing. Small, cheap
sensor nodes are used for intelligent industrial workflows,
smart health care monitoring, and Precision Agriculture. Since
a reliable power connection is seldom available in real-world
deployments and sophisticated energy harvesting technologies
are often too costly, battery lifetime is a central constrain
for many applications. Recharging or replacing a battery is
not always possible or requires expensive manpower. This
makes energy-efficiency a central challenge, when deploying
and maintaining a WSN.

While most data-gathering sensors, e.g., thermistors, con-
sume little energy, using the network interface and transmitting
the sensed data is costly. To save energy, nodes try to stay
as long as possible in a low power state with their network
interface turned off. To still satisfy timeliness constraints of
the collected data, the nodes have to temporary turn on their
interface and transmit the queued packets. In this paper, we
improve the energy efficiency of temporary sleeping clients in
lossy environments by reducing this costly interface uptime.
Since the nodes are working under harsh conditions and have
only limited transmission power, packet loss happens quite
frequently. In order to still guarantee reliable data transfer

with the traditional Automatic Repeat reQuest (ARQ) scheme,
packets must be costly retransmitted, increasing the interface
uptime. This is of particular significance, if a stop-and-wait
strategy is used, as it is the case in the Message Queue Teleme-
try Transport protocol for Sensor Networks (MQTT-SN) [19],
which is a WSN specific adaption of the widely used MQTT
protocol. To minimize the number of retransmissions, we add
loss tolerance based on Forward Error Correction (FEC) to
MQTT-SN. Intrasession Network Coding is an approach, that
inherits implicit FEC. We will apply a seed-based Network
Coding scheme, that is specially suited for WSNs and verify its
benefits. Our proposed approach is an application layer solu-
tion, which guarantees interoperability and can be seamlessly
deployed in existing sensor networks as a software update,
e.g., via Over-The-Air-Programming (OTAP).

A. Motivational real-world deployment

The conducted research is motivated by the challenges,
we have observed in a real-world crop monitoring WSN
deployment in the context of Precision Agriculture. Based
on an evaluation of the potential of low-cost sensors for the
assessment of relevant crop parameters [3], we designed a
specific sensor network for a continuous monitoring of an
important and widely-used crop parameter, namely the leaf
area index (LAI), which is closely related to the vegetative
biomass as it indicates the leaf area per ground area. This
sensing system has been deployed in a specific wheat breeding
test area, as shown in Figure 1.

For the LAI estimation, two groups of sensor nodes were
deployed to measure the light intensity above and below the
canopy. The nodes An were placed directly in the field,
while Node B captures the non-intercepted light intensity
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above the canopy from an elevated position close to the field.
Each sensor node transmits its collected data to the central
gateway G, which is placed at the border. The gateway then
forwards the data to a remote server. There, the measurements
are leveraged as decision support in the agricultural process
chain to realize a site-specific farm management.

Since the sensor nodes are placed in-field, they should not
interfere with vegetation. Thus, they have to be size- and
cost-minimized and guarantee a long battery lifetime without
maintenance. These fundamental constrains limit the nodes ca-
pabilities, especially the radio’s transmitting power. Combined
with the harsh weather conditions in outdoor environments, the
resulting low signal strengths characteristically lead to high
packet loss rates. This makes reliable message delivery with
minimal energy consumption a common and crucial challenge
for low-power and lossy networks, particularly WSNs.

While the presented WSN scenario serves as a motivational
use-case, it does not limit the general scope of our approach.
The shown solution can be applied to other energy constrained
networks as well. For instance, the approach is also promising
for proactive maintenance and state monitoring at industrial
plants, where sensor nodes at pipes and valves can not always
be connected to a power line.

II. BACKGROUND & RELATED WORK

A. MQTT for Sensor Networks (MQTT-SN)

The Message Queue Telemetry Transport protocol for Sen-
sor Networks (MQTT-SN) [19] is a WSN-specific adaptation
of the popular IoT protocol MQTT [2], which is widely used in
the industry and has recently become an ISO/IEC and OASIS
standard [10], [2]. MQTT-SN is designed to enable wireless
publish-subscribe communication between constrained sensor
nodes. The publish-subscribe pattern is a loose-coupled com-
munication approach that uses so-called topics for individual
message exchange. A publisher sends its messages on a spe-
cific topic to a broker, which then forwards these publications
to each subscriber of the topic. MQTT-SN features the core
concepts of MQTT, but is designed to better cope with WSN
constraints, in particular with limited bandwidth, high packet
loss rates, and small maximum transmission units (MTUs).

Similar to MQTT, a common MQTT-SN topology consists
of multiple clients and typically a single broker. The main
difference is the addition of a specific gateway between the
clients and the broker, as shown in Figure 2. If the gateway
receives a message from an MQTT-SN client, it performs
a mapping to MQTT and forwards the converted message
to the broker. The reverse mapping is done for the broker’s
replies. This mapping is essential, since it does also replace
the underlying transport protocol. While the communication
between broker and gateway is based on connection-oriented
TCP, the clients use MQTT-SN on top of UDP. As UDP is
connectionless, the clients do not need to keep a transport
layer connection open to communicate with the broker, as it
is necessary in regular MQTT. This allows each client to turn
off its network interface and enter a sleeping state without
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an extensive reconnection procedure on wake up. The TCP
connections to the broker are managed by the gateway for each
client. This shifts the energy consumption from the constraint
clients to the less energy restricted gateway. Sleeping clients
are one of the core concepts, which distinguishes MQTT-SN
from MQTT.

The missing transport layer reliability of UDP is compen-
sated on the application layer. Similar to MQTT, predefined
Quality of Service (QoS) classes are used. Messages with
QoS 0 are sent unreliably in a fire-and-forget manner. QoS 1
corresponds to a stop-and-wait ARQ method. The QoS 2 op-
tion guarantees exactly one reception of a message, requiring
an additional handshake. Since QoS 2 implies an extensive
overhead, it is not further considered. In regular MQTT, the
application layer reliability is added on top of TCP’s transport
layer reliability. For the here presented approach, we see the
missing reliability of UDP not as a problem, but as an oppor-
tunity. The proposed approach only works, because there is
no underlying retransmission scheme. We enhance MQTT-SN
by adding a Network Coding FEC scheme. Transport layer
reliability, as given by TCP, uses retransmissions and, thus,
does not allow FEC on the application layer above. In [20],
Sundarajan et al. showed a viable solution to use Network
Coding in conjunction with TCP. However, their transport
layer approach requires kernel changes, lacking interoperabil-
ity, resulting in a large update procedure. Our approach does
not require fundamental changes and can be deployed by a
simple application update, easing the deployment in existing
networks.

B. Network Coding

Network Coding can be separated into intersession and
intrasession Network Coding. Intersession Coding refers to
coding across streams, mixing packets from different sources.
It has proven to solve the bottleneck problem in a butterfly-
network [1] and breaking the min-cut max-flow theorem for
multicast communication [14]. In contrast, intrasession coding
combines only packets from a single sender to increase loss
tolerance by adding FEC. The here presented approach uses
intrasession Network Coding, parameterized for constrained
IEEE 802.15.4 devices. The following summary is based on



our prior work [18].
The basic principle of Network Coding was first presented

in [1]. There, Ahlswede et al. used a simple bitwise XOR
operation to create an encoded packet from two original
packets. The simple XOR approach was extended in [14] to
Linear Network Coding (LNC), where a packet is treated as a
vector over an extended binary Galois Field GF (2q). The field
size is determined by the field exponent q. With this approach,
data can be treated as a polynomial over the chosen field.
For example, the 8-bit sequence 11001010 can be encoded
as an element of GF (28), by treating it as the polynomial
1x7 + 1x6 + 0x5 + 0x4 + 1x3 + 0x2 + 1x + 0. Hence, each
element of GF (28) represents a specific byte of data.

A longer n bit data-sequence is represented by concatenat-
ing l = n

q field elements. For example, a 128 byte message can
be written as l = 128∗8

8 = 128 concatenated GF (28) elements.
Using the notations from [20], an original packet p1 can be
formally described as:

p1 = [p11, p12, . . . , p1l] with p11, . . . , p1l ∈ GF (2q) (1)

This new representation shifts the data from the physical
domain into an algebraic domain, allowing to do calculations
across packets. Since Galois Fields are closed, the product or
sum of two elements is another field-element, guaranteeing a
uniform encoded packet-length. This allows to generate and
transmit linear combinations of packets. For example, the
coded packet q1 can be created by q1 = α11p1 + α21p2, as
a linear combination of the original packets p1, p2, using the
coding coefficients α21, α11 ∈ GF (2q). Following [20], this
encoding process for packets with a length of l elements can
be written as a matrix multiplication:(

q11 q12 . . . q1l
q21 q22 . . . q2l

)
=

(
α11 α21

α12 α22

)
·
(
p11 p12 . . . p1l
p21 p22 . . . p2l

)
(2)

Upon receiving a new linear independent packet, the re-
ceiver adds it to the decoder’s storage, forming the decoding
matrix D. If the rank r(D) of this matrix equals the number of
packets involved in the encoding process, called the generation
size g, the receiver can decode the matrix to restore the original
packets. Since the coded packets are linear combinations, the
decoding process corresponds to solving a system of r(D)
linear equations with g unknowns, which can be solved by
using Gaussian elimination. Thus, the decoding condition can
be written as: r(D) ≥ g. If the decoding condition is satisfied,
the inverted coefficient matrix C−1 can be used for decoding
by inverting the encoding process:(

p11 p12 . . . p1l
p21 p22 . . . p2l

)
=

(
α11 α21

α12 α22

)−1

·
(
q11 q12 . . . q1l
q21 q22 . . . q2l

)
(3)

In [9] it is shown that the used coding coefficients α can be
randomly chosen, while still achieving linear independency of
the encoded packets with high probability. This improved cod-
ing scheme is called Random Linear Network Coding (RLNC).
The implicit FEC ability of RLNC is given by the decoding
condition. A receiver does not need to receive every single

packet independently, but just has to obtain enough linear
combinations to decode the accumulated matrix.

C. Related Work

An overview of existing Network Coding applications and
their use in WSNs is given in [16]. Most existing applications,
e.g., [11] or MIXIT [12], are routing solutions, which use
overhearing on lower layers. This is not possible on the here
targeted application layer. SenseCode [13] is a forwarding
scheme explicit developed for sensor networks, but still lacks
in interoperability. The closest related work is presented in [5],
where a publish-subscribe system with Network Coding is
introduced. While there are similarities, the shown approach
differs from our work. It primarily investigates a gossiping
algorithm to tackle timeliness in wide area networks. In our
work, we focus on energy-efficiency for temporarily sleeping
clients in WSNs with small packet sizes. Since a precise
energy consumption measurement presents a problem for
simulation, our evaluation is done in an experimental testbed,
increasing the credibility of our results.

III. ARCHITECTURAL DESIGN

In this section, we will present an efficient way to add
Network Coding FEC to an MQTT-SN network. Our approach
is a transparent application layer solution, which can be easily
deployed to existing, running systems.

In our scenario, an end-user generally does not necessarily
need the freshest data immediately, but does also not want
to receive deprecated measurements. The nodes on the other
hand try to turn off their radio module as long as possible to
save battery power. Our approach uses a two phase duty cycle
to achieve the needed trade-off between timeliness and energy
efficiency. Most of the time, a node stays in a low power state,
where it senses and stores the measurements but has its radio
module turned off to save energy. In our scenario, a sensor
node generates one data-packet every two minutes, but instead
of transmitting it immediately, the packet is queued till the next
transmission phase. To still satisfy timeliness constraints of the
collected data, the node temporary enters a transmission phase.
In this high power consumption phase, the node activates its
radio module and transmits all prior collected data. Based
on our experiences in an agricultural monitoring WSN and
without loss of generality, we assume a one hour timeliness
constrain.

A. Feedback Concept

The current MQTT-SN specification [19] does not con-
tain or define a FEC scheme. To conform to the current
MQTT-SN version 1.2, our here proclaimed architecture uses
only existing publish-subscribe features. One alternate solution
would be to extend the protocol by using a reserved message
type MsgType [19, Chapter 5.2.2], e.g., MsgType 0x11 =
PUBLISH FEC, and specify its processing on reception. A
similar approach would include a reserved ProtocolId [19,
Chapter 5.3.8]. Both solutions are feasible in general, but
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Fig. 3. Activity Diagram of one transmission phase using the presented
architectural design.

differ from the official specification, leading to insufficient
interoperability.

Figure 3 shows an activity diagram of our here presented
architecture for one transmission phase of the publishing
client. Instead of transmitting all queued data as reliable QoS 1
messages, the publisher sends with QoS 0, until a subscriber
has received enough encoded packets to restore all original
data by decoding. This guarantees reliable transfer without
possibly suffering from retransmission delays. The core of our
approach is to run a local subscriber on the gateway node and
use an additional topic to exchange control messages between
the gateway and the publishing client. After activating its radio,
the sensor node encodes a new packet from the stored, sensed
data and sends it as an unreliable PUBLISH message with
QoS 0. When the gateway node subscriber receives such a
coded packet, it feeds the encoded payload to its decoder. If the
decoding-condition is satisfied, the gateway publisher sends
out a “STOP”-control message, indicating that the sensed data
was successfully transmitted. This single control message is
send as a QoS 1 publication, using MQTT-SN’s specified ARQ
reliability. When the subscriber at the sensor node receives
this control message, an internal flag is activated, stopping the
publication of coded packets and allowing the node to enter
its low power phase again.

B. Seed-Based RLNC Scheme for Small Packets

To successful decode a batch of received packets, the
decoder needs to know, which coding coefficients were used
in the encoding process of each packet. In a traditional RLNC
implementation, the coding coefficients are appended as a
vector to the packet. These additional bytes are called the
coding overhead, which usually has a size of log2(2

q) · g
bits [8], for a given Galois-Field size of 2q and g involved
original packets. A discussion of both parameters will be
given later in this section. While transmitting this overhead
is inefficient, the essential problem of Network Coding in
WSNs is induced by the strict MTU constrains. The 802.15.4
standard is limited to 128 bytes on the physical layer, where
half of these bytes could already be consumed for security

or networking purposes, cf. [19, Chapter 2]. If the payload
in our motivational deployment would contain an additional
time stamp or another control parameter, it likely exceeds the
IEEE 802.15.4 MTU limit.

The selected Galois-Field size determines the number of
available coding coefficients that can be used to create encoded
packets. Due to the efficiency of binary operations on modern
CPUs, only extended binary Galois-Fields GF (2q) with field
sizes of 2q , q ∈ N are considered for RLNC. A larger exponent
improves the probability to create linear independent packets,
but also increases the complexity of the coding operations.
Our proposed system uses GF (28) with q = 8, since GF (28)
achieves good linear independence, while maintaining a rea-
sonable coding complexity [8].

The generation size g represents the number of original
packets from which the encoder can generate linear combi-
nations. In our WSN scenario, a sensor node encodes over
all queued packets when activating its radio interface. The
queued packets correspond to the sensed data, gathered in the
preceding low power phase. We have limited the low power
phase to a maximum of one hour, due to the given scenario-
specific timeliness constrains of the data (cf. Sec. III). Since
a node queues one packet every two minutes, this leads to
an accumulation of 30 packets when entering the transmission
phase, resulting in a generation size of g = 30.

Since the coding overhead (log2(2
q)·g) is independent from

the message length, most research in the Network Coding
field assumes, the overhead is negligible, compared to the
transmitted payload. While this assumption is reasonable for
larger packets, it does not hold true when being limited by
small MTUs, which is a common case in WSNs. In our
scenario, the encoding is done over GF (28), with a generation
size of g = 30, resulting in an overhead of 30 bytes/packet.
The payload in our real-world deployment has a size of
only 29 bytes. Adding 30 additional bytes corresponds to a
significant overhead of ∼ 103.45%.

To reduce the coding overhead, our solution uses a unique
Network Coding scheme, called seed-based RLNC, which is
presented in [4]. Using seed-based RLNC, the coding vector
can be replaced with a single small number, if encoder and
decoder can use this number as a seed to each initialize a
random number generator (RNG), producing the same coding
coefficients. A generic explanation of seed-based RLNC is
given in [8]. In our system, the publisher selects the seed
and initializes its RNG, and then generates the coefficients for
encoding. The seed is then added to the head of the payload.
Because the seed is significantly smaller than the usually added
coding vector, an overhead reduction is achieved. For our
scenario, we have chosen a one byte long seed, shrinking
the overhead from 30 bytes down to 1 byte. On reception, the
subscriber extracts the seed, initializes its RNG with it, then
reproduces the coefficients to enable successful decoding.

When defining the seed size, a trade-off between overhead
and loss resistance has to be made. A small size leads to a
limited number of possible coefficient vectors. This restricts
the creation of linear independent packets and could result



in useless receptions, making the whole scheme inefficient. A
large seed size, on the other hand, implies additional overhead.
Our evaluation will show, that a one byte long seed is sufficient
to achieve close to optimal Network Coding gains, while still
only inducing a reasonable one byte small overhead.

An even more efficient way to get a pseudo-zero overhead
would be to reuse the message identifier field MsgId of
MQTT-SN. This two byte long field is included in every
PUBLISH message header [19, Chapter 5.4.12]. For QoS 0
messages, the field is set to 0x0000. It is not further used and,
thus, available for modification. Since the MsgId is already
taken into account within the MQTT-SN header, this approach
does not add additional overhead, as it reuses existing bytes.
We still do not consider this solution as feasible for our
scenario, since we focus on transparency and interoperability,
restricting a modification of the MQTT-SN specification.

It has to be noted that there are some restrictions regarding
recoding for seed-based RLNC. Due to our focus on the clients
as endpoints and length limitations of this paper, we do not
consider the effects of recoding in an MQTT-SN system any
further.

IV. IMPLEMENTATION

To conduct the emulative testbed evaluation, we imple-
mented the proposed architectual design for Linux clients. The
implementation is based on AsyncMQTT-SN [22], which is
an open source implementation of MQTT-SN. The presented
Network Coding scheme was added to the application by
creating a custom seed-based encoder and decoder, using the
Kodo Network Coding library [17].

V. EVALUATION

To evaluate the proposed solution, we conducted a three step
approach. First, the collected real-world traces were analysed
and a Gilbert-Elliott (GE) loss model was calibrated for each
link of the real-world deployment. We decided to use a model
and not to use the traces themselves. This allows to create a
more replicable, controlled emulation setup. The model and its
link-specific parameterization were then used to emulate bursty
packet loss in an experimental testbed under controllable lab
conditions. This testbed setup was also necessary, since the
motivational real-world deployment had been removed after
the vegetation period. In this second step, the interface uptimes
were measured for each emulated link in order to evaluate
the Network Coding gains against the MQTT-SN baseline
approach. In the third evaluation step, precise power consump-
tion measurements are presented. These measurements include
the additional power consumption of the Network Coding
scheme, which is induced by the increased CPU load. We will
evaluate if the additional Network Coding operations have a
significant effect on the overall power consumption.

A. Trace Analysis and Loss Model Calibration

The impact of the proposed MQTT-SN extension strongly
depends on the quality of the link between both commu-
nication entities and the packet error ratio (PER), respec-

TABLE I
LINK-SPECIFIC PARAMETERIZATION OF THE GILBERT-ELLIOTT LOSS

MODEL.

Link
PER
in %

p
in %

r
in %

1-k
in %

1-h
in %

PERGE

in %
A1 → G 22.03 0.814 2.749 0.295 88.594 19.42
A2 → G 20.29 0.960 3.485 0.347 85.145 18.57
A3 → G 18.01 0.782 3.595 0.250 86.240 13.80
A4 → G 15.61 0.955 4.696 0.286 81.788 13.38
B → G 21.19 0.872 3.157 0.084 87.122 18.78

tively. Hence, it is crucial to choose an adequate loss model
if simulations or emulations are conducted for evaluating
this impact. Moreover, credible evaluation demands a suitable
calibration of such a model which commonly is scenario-
specific and can be performed by analyzing real-world trace
files. Since we focus on a real-world scenario and practical
measurements of evaluation metrics in this paper, we decided
to use an emulative evaluation approach in an experimental
testbed based on NetEm [21], a widespread traffic control tool
for Linux.

As a sound and comprehensive loss model selection for our
scenario is out of scope of this paper, a classical Markov chain
based loss model is used that is already included in NetEm,
namely the GE model (cf. [7]). Furthermore, we made the
assumption that link qualities are symmetric. The reason is
that we observed a similar PER for both direction of links in
our deployment since we use a common sensor node attached
to a fully-equipped router as gateway device. Hence, for the
calibration of the selected loss model, we use parameters
obtained by links from the sensor nodes A1, .., A4 and B
to their gateway G (cf. Fig. 1). The model is then applied
for both link directions. The corresponding traces gathered
during the long-term WSN deployment (74 days) contain a
large number of the successfully delivered packets from each
node to the gateway. Unsuccessful delivery attempts were also
marked. Thus, with a number of roughly 23,500 packets per
link, they serve as an appropriate and broad base for the
calibration. The 29 byte payload of these packets consists of a
unique source address, a sequence number (SN), and multiple
sensor readings. The WSN application periodically senses and
transmits this data with a fixed frequency of two minutes
in daytime, using a IEEE 802.15.4 compliant CC2420 radio
transceiver with maximum TX power at 2.4 GHz. We not only
determined the PER of each individual link, but also analyzed
the packet loss burstiness according to [6]. As g min, the
so-called gap threshold, a value of 4 packets is considered as
reasonable for the burst classification of our trace files.

Based on this classification, we then determine relevant
parameters for the GE model for all links in our deployment.
These parameters are listed in Table I and emphasize the
challenging connectivity in suchlike scenarios. For further
calibration details, please refer to [7].

Finally, we evaluated the quality of our model and its cali-
bration by comparing the average PERs as well as the caused
burstiness. For the former, we conducted 50,000 ping mea-
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surements for each link, configured with NetEm and the corre-
sponding GE model. The resulting PER is denoted as PERGE

and included in Table I. As can be seen, both PERs are
roughly comparable. Figure 4 shows the burstiness of the real-
world traces in comparison to traces that were synthetically
generated by our model. The presented empirical cumulative
distribution function (ECDF) plot shows exemplarily the link
from sensor A1 to the gateway G. The other links achieve very
similar results. For demonstration purposes, we also included
a second synthetic trace, generated by a conventional uniform
distribution model with the corresponding average PER. The
figure shows the benefit of the GE model since the simple
uniform distribution model is obviously not representative
for the real-world traces. The figure also confirms that the
burstiness of both, the real-world and the GE model trace,
is reasonable comparable as well, even though there is room
for improvement. Therefore, a more complex model would be
required. Yet, such a model is not supported by NetEm and
the quality of the GE is sufficient for our purposes.

B. Testbed Setup

The constructed testbed consists of three different hardware
platforms, representing the heterogeneous devices within the
MQTT-SN topology of our motivational scenario. While the
broker runs on a common notebook, a Raspberry Pi 3 model B
was used as Gateway. The constrained in-field nodes are
represented by a Raspberry Pi Zero with an attached
TP-Link TL-WN722N WiFi dongle. The evaluated system
uses UDP sockets, but the presented results are similar in
IEEE 802.15.4 networks. We are aware, that the Pi Zero is
on the upper spectrum of sensor nodes, regarding processing
capability and power consumption. Yet, the shown findings
can easily be transferred to other sensor node platforms, e.g.
Waspmote [15]. Each link between a client and the gateway
was emulated using NetEm [21] by applying the corresponding
Gilbert-Elliot model, which was calculated from the corre-
sponding real-world trace.

C. Measured Radio Uptime

In contrast to the simultaneously measured energy consump-
tion, an evaluation of the radio uptime yields more transferable

results. By using the measured uptimes and the nominally
power consumption of a different sensor node platform, we
can roughly predict the possible gains of our approach for
other setups.

Figure 5 presents the measured interface uptimes for every
emulated link. The MQTT-SN baseline approach is shown
side-by-side to the novel Network Coding solution. Each
boxplot involves 100 replications. The y-axis has a logarithmic
scale. In the experiment, the client publishes once per second
with a maximum of one in-flight message. This limit is used
with respect to congestion and fairness in networks with
constrained bandwidth. A duration of one second is also the
shortest possible sending interval in the AsyncMQTT-SN client
implementation. In the best practice section of the MQTT-
SN specification, the recommended retransmission timeout is
10–15 s [19, Chapter 7.2]. While such a long timeout would
amplify the benefits of our approach, we do not consider it
as reasonable in our scenario. Thus, a lower retransmission
timeout of 2 s is used. It has to be noted that the selected
parameters have a large influence on the measurements and
should be closer evaluated for other applications.

As shown in Figure 5, the Network Coding solution results
in a shorter mean interface uptime for every emulated link than
the MQTT-SN baseline approach. This reduced duration is
achieved, because the Network Coding scheme uses unreliable,
acknowledge-less QoS 0 publications. In the baseline scheme,
each QoS 1 publication triggers a retransmission timeout, if
either the publication message itself is lost or if the gateway’s
acknowledgement fails. For a symmetric link, this results in
an average success probability of (1 − p2) for each baseline
publication, where p is the link’s average PER. The coded
transmissions are sent with QoS 0 and, thus, do not need to be
acknowledged. Except for the final, reliable control message,
the average Network Coding success probability is (1−p) for
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Fig. 5. Testbed measurement of the radio uptime for both transmission
approaches, with each link emulated using the corresponding GE-model.
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Fig. 6. Radio uptime duration reduction in % for each link, plotted ascending
to the corresponding GE-model’s average loss rate.

each publication, given optimal linear independency, which we
will verify in the following Section V-D. This linear, instead of
quadratic influence of the PER is a known benefit when using
Network Coding FEC for reliable data transfer. The higher
a link’s PER, the more does the corresponding client profit
from FEC. This is shown in Figure 6. A closer examination
of this effect for increasing loss rates was done in [18]. For
our testbed measurements, the system’s overall average uptime
reduction is 38.76 %.

D. Linear Independency Simulation

The linear independency of the encoded packets is a central
criteria, when evaluating a Network Coding scheme. If a re-
ceived packet is not independent from all already accumulated
packets, it does not increase the decoder’s rank. The packet
will be discarded by the receiver, since it does not yield
new useful information. In [9], it was proven, that encoded
packets with randomly chosen coefficients are independent
with high probability, for a sufficient large field size and
generation size. In our setup, both selected parameters are
large enough according to [9], since we code over GF (28),
using a generation size of g = 30

For a seed-based Network coding scheme, a linear inde-
pendency evaluation has an additional, extraordinary priority,
since the number of unique coding coefficient vectors is
limited to the seed size. Our selected seed has a size of
1 byte, thus, 256 unique RNG runs can be initialized, leading
to 256 different coefficient vectors, each inheriting RLNCs
high probability of linear independency. If two packets would
be received, that were encoded using the same seed, the later
would be marked as linear dependent and rejected. This does
not happen in standard RLNC, but is a unique, characteristic
problem for seed-based schemes. To evaluate how often the
problem occurs, we conducted an additional simulation, using
longer, synthetic traces from all five calculated loss models.
We noted when a received packet did not increase the de-
coder’s rank. Out of over 40,000 received packets, only 4
of them were not linear independent. These packets will be
treated by the receiver, as if the packets were lost. Compared
to the channel-inducted packet loss in our scenario of 13.38 %
to 19.42 % (cf. Tab. I), only 0.01 % of the received packets
were rejected due to linear dependency. The influence of this

effect is negligibly close to zero. While this empirical study
is not a hard analytic proof, it verifies our selected seed size
of 1 byte as reasonable for the given scenario.

E. Energy Consumption Measurements

To examine the hypothesis, that the additional coding op-
erations on the CPU would lead to a higher power con-
sumption, the testbed client’s energy consumption in the
transmitting phase was measured during the conducted uptime
experiment. The electric current in Ampere was measured
with a Fluke 289 True-RMS industrial multimeter, sampled
with a polling rate of 1/s. The used power supply has a
nominal voltage of 5 V. The client’s power in Watt, calculated
using the average current, is presented for each emulated
link and transmission approach in Table II. The presented
measurements do not confirm the hypothesis, that the addi-
tional coding operations on the CPU result in a higher power
consumption. There is no significant difference or tendency
regarding the power consumption between both schemes. It
has to be noted, that the used Raspberry Pi Zero features a
1 GHz ARM1176JZF-S CPU, which does not reach its limit
as fast as weaker CPUs in constrained sensor nodes. Since
the overall average consumption is also higher, the additional
CPU usage could be masked by side-effects, leaving room for
future, dedicated research on this topic.

F. Scenario-specific Power Prediction

By combining the energy consumption measurements from
Table II with the average radio uptimes, cf. Figure 5, we can
predict the average daily energy consumption for the targeted
motivational scenario. The final result in Figure 7 shows the
average consumed transmission energy, accumulating over the
course of one day. The sensor nodes in our motivational
deployment measure the solar light intensity, thus, they are
only active from 4:00 a.m. to 10:00 p.m. This interval is
represented on the x-axis in Figure 7. At the beginning of every
hour, each node activates its network interface and transmits
the accumulated sensed data, then turns off the radio module
again. Since the nodes consume in both compared approaches
a similar amount of energy while transmitting, cf. Tab. II,
the interface uptime is the deciding factor. Our proposed
Network Coding solution enables the node to earlier turn off

TABLE II
MEASURED ENERGY CONSUMPTION

Link Mode V mA mW

A1 → G Base 5.0 247 ± 0.25 1235
NC 5.0 249 ± 0.32 1245

A2 → G Base 5.0 249 ± 0.33 1245
NC 5.0 249 ± 0.41 1245

A3 → G Base 5.0 252 ± 0.27 1260
NC 5.0 255 ± 0.26 1275

A4 → G Base 5.0 246 ± 0.31 1230
NC 5.0 252 ± 0.34 1260

AB → G Base 5.0 251 ± 0.28 1255
NC 5.0 249 ± 0.33 1245

All Sleeping 5.0 84 ± 0.01 420
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Fig. 7. Prediction of the average consumed radio interface energy consump-
tion for one day in the motivational scenario

its radio, entering the low power state earlier. Thus, with every
transmission phase, our approach saves energy, leading to the
accumulating differences between the plotted same-colored
graphs. Depending on the link quality, this results in a saving
of 63.60 mWh for link A4 → G up to 127.25 mWh per day
for link B → G. On average, our proposed Network Coding
solution reduces the consumed energy in the transmission
phases by 38.21 %, accumulating to an average daily saved
96.70 mWh for our motivational scenario.

While these savings are convincing, it has to be noted, that
they are small, compared to the node’s overall consumption.
Each client runs on a Raspberry PI Zero, which already
has a huge idle power of 420 mW (Tab. II). Since the
client’s radio is active for just a short duration every hour,
the average saved 96.70 mWh only correspond to a 1.24 %
reduction of the nodes’ average overall power consumption of
7811 mWh. The benefits of our proposed solution are increased
for sensor nodes, that have a larger gap in transmission and idle
power consumption. For example, the widely used Waspmote
platform [15] nominally consumes 185 to 320 mW while
using its 5V XBee module and only 0.5 to 4.65 mW with
its interface in a shallow sleep mode. For a client device
with these parameters, our approach would roughly estimated
save up to 146 mWh of the average daily consumed 486 mWh,
which is an overall reduction of up to 30.04 %. These savings
greatly increase the WSN’s overall lifetime, which can make a
costly, labor-intensive battery replacement obsolete to achieve
a maintenance-free deployment period.

VI. CONCLUSION

The conducted testbed experiments have shown convincing
results. The proposed architectural design can easily be im-
plemented and transparently deployed to existing WSNs. By
using the presented seed-based Network Coding scheme, the
sensor nodes radio uptimes will be reduced to save energy,
while still guaranteeing reliable data transfer. For the given
loss rates in our scenario, the radio uptimes can be reduced
by 38.24 % on average. We are looking forward to further
evaluate our approach in oncoming field studies and further
measure the energy savings for stronger constrained devices.
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