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ABSTRACT

Smart Farming refers to the act of utilizing modern information and
sensor technology in conventional industrial farming. An impor-
tant plant parameter that can be estimated by sensor technology
in the context of Smart Farming is the leaf area index (LAI) which
is a key variable used to model processes such as photosynthesis
and evapotranspiration. Nowadays, leveraging the enhanced sen-
sor peripherals of current devices and their computing capabilities,
smartphone applications present a fast and economical alternative
to estimate the LAI compared to traditional methods. This paper
exemplarily extends such an application, namely Smart fLAIr, with
features of Mobile Crowdsensing (MCS) in order to create a sys-
tem for a crowd-sensed LAI enabling an increased spatio-temporal
resolution of LAI estimations. Besides the system design, this pa-
per conducts a threat analysis for user privacy in the application-
specific scenario which can be transferred to general Smart Farming
scenarios. As a consequence, a perturbation based privacy mecha-
nism is developed and applied in conjunction with a Trusted Third
Party (TTP) architecture to ensure user privacy. Subsequently, its
impact is demonstrated. Moreover, the energy consumption of the
extended Smart fLAIr application is evaluated showing negligible
additional costs of the proposed MCS extension.
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1 INTRODUCTION

Using modern information, communication, and sensor technology
to improve the efficiency of agriculture is called Smart Farming.
Information gained by this approach can be leveraged as decision
support for various agricultural processes and allow for a sustain-
able and site-specific management of agricultural fields. An im-
portant plant parameter that can be estimated by modern sensor
technology is the leaf area index (LAI). The LAI is defined as the
one-sided leaf area per unit horizontal ground surface area. It is the
main variable of many models used to describe vegetative processes
such as photosynthesis and evapotranspiration [21] and can also
greatly support agricultural decisions and yield predictions. The
LAI is usually estimated indirectly, i.e. it is derived by the measure-
ment of a related quantity such as solar radiation. Available devices
range from commercial hand-held instruments to in-situ Wireless
Sensor Networks (WSNs) and Remote Sensing [18]. Recently, due
to the technological progress in the smartphone evolution, a few
indirect LAI approaches for smartphones were proposed. Imple-
mented as a smartphone application (app) that can be installed on
common devices, these approaches greatly reduce the hardware
costs required by traditional approaches. They are promising to
significantly increase in-situ LAI information and, thus, providing
ground truth for validating Remote Sensing approaches.

Mobile Crowdsensing (MCS) is an emerging sensing paradigm
that employs smartphone owners jointly measuring data via inbuilt
smartphone sensors or additional sensor equipment to share these
data or to provide them to a certain processing entity. This idea is
very promising for being integrated into Smart Farming, particu-
larly for in-situ assessments of plant parameters, and is sometimes
referred to as farmsourcing [16]. LAI estimates, for instance, could
be collectively gathered with a relatively high spatio-temporal res-
olution. These estimates could then be forwarded to another entity,
e.g., commercial farm management information systems (FMISs) or
related software platforms for agricultural services, analyzing and
processing these data. This integration would have a significant
added value for farming activities.

Besides an appropriate communication architecture, minimized
energy consumption, and mechanisms for data quality and incen-
tives, a core challenge in MCS systems is privacy. In order to prop-
erly analyze the data submitted by the users, it is necessary that
the data are tagged with spatio-temporal information. However,
without adequate privacy measures, many users might be unwilling
to share this private information publicly or even with a tasking
entity.

This paper proposes a privacy preserving MCS architecture
for LAI apps. The architecture addresses two application-specific
challenges: (1) the demand for a high spatial precision, since it is
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important to reliably determine the location and the crop type for
which a sample was measured, and (2) the typically sparse popula-
tion in the vicinity of farming fields, which results in a comparably
small number of participants, thus, impedes user privacy. The core
contributions of this paper are: (1) a threat analysis for MCS sys-
tems in a smart farming context, (2) a privacy preserving MCS
architecture for scenarios that require high spatial precision, based
on a Trusted Third Party (TTP) and data perturbation, and finally
(3) a prototypical MCS extension of Smart fLAIr!, based on a widely
used IoT messaging protocol, including a backend server and a
prototype client.

The remainder of the paper is organized as follows: Section 2
presents related work in privacy preserving MCS architectures as
well as specific privacy mechanisms for protecting spatio-temporal
information. The basis for the MCS LAI app, Smart fLAIr, is briefly
described in Section 3. Section 4 conducts a threat analysis in the
application-specific scenario. Then, in Section 5, the developed pri-
vacy mechanisms as well as the designed architecture are described.
The privacy mechanisms are evaluated and experiments regard-
ing the energy consumption of the extended Smart fLAIr app are
performed in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

One of the most common privacy models is k-anonymity, which
has been introduced in the context of Location Based Services (LBS)
in [8, 9]. Here, k-anonymity means that a user’s spatio-temporal
information is indistinguishable from at least k — 1 other users.
Spatio-temporal information is defined as a tuple containing three
intervals ([x1, x2], [y1, y2], [t1, t2]), where the [x1, x2] and [y1, y2]
intervals describe the spatial coordinates of a user and the inter-
val [t1, t2] describes the time range in which the user was present
at this location area [9]. A user’s spatio-temporal tuple is then
k-anonymous, if it overlaps the corresponding tuples of at least
k — 1 other users. The process of changing a precise value of data,
i.e., a tuple of spatio-temporal information, to a more uncertain
interval, is called obfuscation and is the most common method
to achieve k-anonymity [8]. Approaches such as I-diversity [15]
and t-closeness [14] extend the concept of k-anonymity and achieve
an even stronger degree of privacy. Another complementary pri-
vacy method is data perturbation [5]. While obfuscation approaches
anonymize data by creating an interval, perturbation approaches
anonymize data by adding some form of noise to the sample. An-
other common privacy method in the literature is the use of a TTP.
A TTP is an entity that the users trust with their original, precise
spatio-temporal information. Its role is to anonymize the data of
the users and distribute these anonymized data to LBS providers.
There are several privacy-aware participatory MCS architec-
tures proposed in the literature. One privacy-aware participatory
MCS architecture is called PEPSI [4]. It employs identity-based en-
cryption in order to prevent unauthorized access by clients to a
user’s samples. While PEPSI prevents unauthorized clients from
accessing user samples, authorized clients gain access to the raw,
unanonymized data submitted by the users. In [23], a privacy-aware
architecture for periodic data collection is proposed. It operates
under the assumption that user privacy is ensured when neither

!Smart fLAIr Android APK available at https:/sys.cs.uos.de/smartflair/index.shtml
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a global eavesdropper nor the reporting service can link submit-
ted reports to users. For that purpose, [23] employs a two-phase
peer-to-peer scheme that utilizes public key encryption. In [5], a
mathematical model of data perturbation and reconstruction tech-
niques is developed for participatory MCS systems. It takes into
account, that simply adding random noise to the data does not
always ensure user privacy [11] and consequently develops a mech-
anism for users to perturb their data using a phenomenon-specific
noise model. SSPEAR [7] tries to provide a comprehensive privacy
architecture, where users can still be held accountable for their
actions. The general idea is that users are uniquely identified via a
device ID, whereas they submit samples using frequently changing
pseudonyms.

While above privacy approaches are designed to protect users’
spatio-temporal information, they are only partially suited for a
Smart Farming scenario, as they take neither the high need for
spatial precision nor the sparse population near farming fields into
account. The system designed in this paper is a participatory MCS
system. Hence, only privacy-aware participatory MCS systems from
the literature are mentioned here, as opportunistic MCS systems
face slightly different challenges regarding user privacy.

3 SMARTPHONE-BASED LAI ESTIMATION

The direct (i.e. mainly destructive) LAI measurement is infeasible
in practice. For that reason, this important quantity is usually esti-
mated by indirect approaches that basically measure the interaction
of solar radiation with green vegetation by using photosyntheti-
cally active radiation sensors or digital hemispherical photography.
Complementary to commercial hand-held instruments or novel
agricultural WSNs, due to the technological evolution and pro-
liferation of smartphones, a few indirect LAI apps were recently
introduced such as PocketLAI [3] and Smart fLAIr [1]. These apps
differ in their methodology and were evaluated in different type of
crops. While currently mostly being used for scientific and farm
consulting purposes [16], they were shown to achieve sufficient
accuracy. However, none of the existing LAI apps feature MCS sup-
port yet. Therefore, we exemplarily developed an MCS extension for
Smart fLAIr with a special focus on privacy and energy-efficiency,
since both factors strongly affect user acceptance. However, our
extension is generic and not limited to this specific smartphone
app.

Smart fLAIr is an economical alternative for LAI estimation
and implemented in Android. It takes advantage of the inbuilt am-
bient light sensor (ALS) to successively measure the luminance
above and below the canopy. Using these measurements the LAT is
subsequently derived. To mitigate the effects of small-scale environ-
mental noise, several luminance readings are performed and aver-
aged for each particular LAI estimation and located using the GPS
sensor. For additional details of Smart fLAIr, please refer to [1].

4 THREAT MODEL AND PRIVACY GOALS
4.1 Privacy Attacks

To the best of our knowledge, there exist no dedicated surveys of
possible privacy attacks against MCS systems. For this reason, this
section will cover privacy attacks in general LBSs. A survey on
such attacks is presented in [22]. In the first category, the attacker
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only has a single snapshot of spatio-temporal information. In the
second and third category, the attacker is in possession of several
snapshots. A priori, these snapshots are not linked in the second
category, i.e., it is unknown which user submitted which sample.
In the third category, such links are known a priori, e.g., via user
pseudonyms that are part of the submitted samples.

4.1.1 Single snapshot of spatio-temporal information. Some-
times the size of obfuscation intervals for k-anonymity may be
very limited. Homogeneity attacks [15] use this circumstance to
breach user privacy in such cases. In case a spatial or temporal
k-anonymity obfuscation interval stretches from an area with
few users to an area with many users, a distribution attack [17]
may conclude that the subject is in the area with few users. A
personal context linking attack [9] uses personal information about
the subject, e.g., about his hobbies or habits, in order to breach
his privacy. In an observation attack [9], the attacker physically
observes the subject to gather more context knowledge, i.e., in
order to link a pseudonym with a real world identity. The map
matching attack [13] can reduce obfuscation intervals, in case such
intervals encompass physical areas which are (almost) inaccessible.
In a probability distribution attack [19], the attacker uses probability
distributions, e.g., about user mobility, in order to shrink the size
of an obfuscation interval.

4.1.2  Multiple unlinked snapshots of spatio-temporal informa-
tion. The main purpose of attacks in this category is the linking of
several snapshots, which are available to the attacker, to specific
users. A common approach to achieve this linking is the location
tracking attack [9]. If a user’s location is updated frequently, an
attacker may link subsequent location updates to the same user.
A more general form of a tracking attack is the identity matching
attack [2]. It utilizes other, mostly user-specific, attributes that users
provide to the LBS in order to link snapshots together.

4.1.3  Multiple linked snapshots of spatio-temporal information.
In a shrink region attack [20] the attacker monitors changes in the
k-anonymity set during consecutive messages. If the attacker is
able to correlate consecutive messages being made by the same
subject, changes in the k-anonymity set can be utilized to identify
the user. A region intersection attack [20] can be used against simple
obfuscation approaches. It calculates the intersections of subsequent
location updates, which can be used to narrow down the subject’s
location. Using estimations of the subject’s movement speed, the
maximum movement boundary attack [6] calculates the maximum
distance the subject could have moved between two subsequent
location updates. Alternatively, the minimum duration needed to
reach the locations of the updates is calculated. If the obfuscation
interval is beyond this limit, it can be significantly reduced.

4.2 Threat Analysis

In the MCS extension of Smart fLAlr, users submit a variety of pri-
vacy sensitive information with each sample. These include the
spatio-temporal information of the sample and, for future data
quality and incentive extensions, a user pseudonym. Additionally,
users may optionally provide the name of the crop whose LAI was
measured. This name can be selected from an exhaustive list of crop
names provided by the application. In some cases this crop name
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Figure 1: Privacy attacks, their goals, and how they are influ-
enced by application-specific characteristics.

can serve as a quasi identifier, e.g., because a single user always
provides the wrong crop name. The LAI value itself contains no per-
sonal information. However, the LAI, as estimated by Smart fLAIr,
exhibits significant fluctuations throughout the day, depending on
changes in environmental conditions such as the zenith angle of
the sun or the cloud coverage. Due to the dependence on the zenith
angle of the sun, the fluctuations in a single day are bigger than
the fluctuations between two days when they are measured at the
same time of day.

Figure 1 shows how the privacy attacks described in Section 4.1
are influenced by several scenario-specific characteristics. In order
to properly analyze the gathered data, it is important that the spatial
information of each sample is as precise as possible. It is common
that different crops are located in neighboring farming fields, and
imprecise spatial information could lead to ambiguity for which
kind of crop the sample was measured. This characteristic prevents
the use of many common privacy mechanisms that coarsen spatial
information. The population near farming fields usually tends to
be sparse. This makes user privacy more difficult, as users need
to be anonymized in a small group of other users in their vicinity.
Furthermore, it is easier for an attacker to link multiple samples to
a specific user, if the overall number of users in the targeted area is
small (location tracking and identity matching attack). Moreover,
the physical act of measuring the LAI using a smartphone is clearly
visible. Thus, no privacy measure can ensure user privacy, if the
attacker can observe a user during a measurement (observation
attack). As farming fields tend to cover a large area and there may
be an arbitrary distance between two farming fields, users will only
submit samples relatively infrequently. This weakens all attacks
that depend on multiple snapshots of spatio-temporal information.
The crop name which users may optionally provide has detrimental
effects for user privacy, e.g., because it may serve as a quasi identifier
in an identity matching attack or personal context linking attack.
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4.3 Privacy Goals

According to [22], there are three kind of privacy goals in LBSs: the
identity of a user, his spatial information, and his temporal informa-
tion. Solely protecting user’s identity is often not enough, because
the user’s identity can be inferred by coupling the spatio-temporal
information of samples with additional context knowledge [22].
Thus, while the user identity should be protected, it is also neces-
sary to protect either the subject’s spatial or temporal information.
The LAI is only measured in the vicinity of farming fields, which
generally have no relationship with specific users (except perhaps
living somewhere in the vicinity). Thus, location information holds
only very limited value for attackers. As precise spatial information
is an important requirement for the analysis of the gathered sam-
ples, we assume that users are willing to provide the exact location
of their samples, if the other two privacy goals are met.

5 SYSTEM DESIGN AND IMPLEMENTATION

5.1 Privacy Measures

One privacy measure which is widely used in the literature and
adopted by the system is the use of a TTP. This allows users to send
additional, privacy sensitive data to the server, which are retained
when clients query the backend server for samples. By doing so, the
additional data are available only at the backend server for further
computation, while not compromising user privacy, because the
TTP is assumed to be a trusted entity. Thus, methods that result in
the highest data quality, while still preserving user privacy, can be
chosen. While the use of pseudonyms is detrimental to user privacy,
it also offers many advantages, e.g., for data quality or incentive
purposes. For example, malicious users can be banned only if these
users can be identified (via a specific pseudonym). Additionally,
many incentive mechanisms require users pseudonyms [12]. For
this reason, users are required to submit samples with a pseudonym.
However, this pseudonym is only visible to the TTP, i.e., the admin
user and the backend server. Clients can only retrieve samples with-
out their respective pseudonyms. While preventing client access to
user pseudonyms strengthens user privacy, it is not sufficient. For
example, if a user is the only one who submits samples in a certain
area, this user can be linked to all samples within this area. As the
population near farming fields tends to be sparse, this likelihood is
not negligible in a Smart Farming scenario. This means that user
privacy needs to be increased by coarsening either the spatial or
temporal dimension of the samples. As high location precision is
necessary for proper analysis of the LAI the coarsening will be
applied to the temporal dimension.

Common k-anonymity approaches face the challenge, that mea-
surements by multiple users may be spread far apart in the temporal
dimension in our scenario, because of the sparse population. This
may result in a large distortion of the temporal information of the
sample. Obfuscation approaches that do not use k-anonymity ap-
proaches, i.e., have arbitrary interval sizes, face the challenge that
no other user may have submitted samples in this time range, thus,
reducing the intended privacy gain. For this reason, perturbation
approaches will be used to coarsen the time domain in farming
applications.

Due to the fluctuations of the estimated LAI depending on the
time of day, the day component of the samples is perturbed along

L. Huning et al.

MQTT

— . REST
A F Publish—>| (5)_ Subserl> i%Q“eW—‘b

/ Broker Database Clients

Backend Server

- (TTP)

Figure 2: Communication architecture overview. MCS par-
ticipants publish and share samples on the broker, to which
the database server is the only subscriber. Clients can query
the database for anonymized samples.

with the minute component. The perturbation will be applied at
two entities: once at the backend server and once at the Smart fLAIr
application. The backend server can use additional information,
e.g., knowledge of other samples, to perform a more intelligent
perturbation than Smart fLAIr. The range of perturbation applied
at the backend server is uniform random noise from the intervals
ts = [-2,2] daysand t,bn = [-60, 60] minutes. Since the temporal be-
havior of the LAI regarding environmental factors is plant-specific
and as, to the best of the our knowledge, there exist no adequate
models that describe this behavior, adjusting the LAI value to the
perturbed time is left for future work. As the perturbed time may
lie in the future, the backend server ensures that samples are only
returned to clients’ requests in case the perturbed time has already
passed. Furthermore, the samples which are accessible to clients
will only be updated once a day. The perturbation of Smart fLAIr
serves as a privacy mechanism for users that distrust the TTP,
e.g., because they fear that it will be compromised. Users will be
able to select two distinct perturbation values, the number of days
and the number of minutes. However, to provide a certain data
accuracy, users can only perturb their sample in the time intervals
t(si = [-1,1] days and t}, = [-60, 60] minutes.

5.2 Communication Architecture

For the communication between the users’ smartphones and the
backend server, a widely used IoT messaging protocol, Message
Queue Telemetry Transport (MQTT)?, is employed. Its advantages
are the small communication overhead as well as its publish-
subscribe principle, which is well suited for MCS applications.
Users measure data with the help of the extended Smart fLAIr app
and publish these data via MQTT on a predefined topic on a broker
running on the backend server. An additional application on the
backend server is subscribed to this topic and is responsible for
anonymizing those data and storing them into a database. In order
to ensure the reliable delivery of each sample, we use Quality of Ser-
vice (QoS) level 1 of MQTT. For the representation of LAI samples,
we use a message format based on Protocol Buffers (protobuf)?
that offers an efficient and platform-neutral binary serialization of
structured data decreasing the communication overhead. Clients

http://mqtt.org
3https://developers.google.com/protocol-buffers/
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such as FMISs can get an anonymized version of these data by
querying the backend server via a REST service, as it is a standard
method of requesting data in the Internet. Figure 2 shows an
overview of the communication architecture.

With regard to future incentive and data quality mechanisms,
e.g., against malicious users, users have to register with the backend
server before they can submit samples. This process is done auto-
matically upon the first execution of the app. An universally unique
identifier (UUID) is created and serves as the username, while a
random integer from the interval [0, 2'3° — 1] is used as a password
in its base-32 encoded form. All communication between the users’
smartphones and the backend server is protected by Transport
Layer Security (TLS), which provides encryption and integrity for
the communication. Appropriate access control mechanisms at the
broker ensure that only the backend server can subscribe to the
topics for registration and sample submission. A prototype client
that can query the backend server for new samples was realized as
a web interface.

As WiFi access in rural areas in the vicinity of farming fields
is likely to be very rare and to preserve the data volume of mobile
communication, users have the option to postpone the delivery of
samples. Instead of immediately transmitting samples via mobile in-
frastructure after recording, these samples are locally buffered until
a dedicated button is pressed. Furthermore, the MQTT connection
is kept alive for a user-chosen period (default: 15 min) after a sample
has been published in order to prevent unnecessary connection
initiations when a user submits several samples subsequently in a
short time period and, thus, reduce the communication overhead.

6 SYSTEM EVALUATION

6.1 Impact of Privacy Measures

The privacy measures used in our system prevent the attacks de-
scribed in Section 4.1. Figure 3 shows which attack is prevented
by which privacy measure. Some of the attacks mentioned are not
applicable, because they are designed against privacy measures that
were not chosen for this system, e.g., k-anonymity. These include
the homogeneity, the distribution, and the map matching attack as
well as the shrink region and the region intersection attack. Other
attacks are made more difficult by the employed privacy measures.
The use of a TTP, which prevents access to the users’ pseudonyms,
weakens all attacks that link samples together as they contain no a
priori identifier (location tracking and identity matching attack).
This kind of attack is further mitigated due to the infrequent samples
in the daily server updates, which will in most cases prevent linking
of samples based on the spatio-temporal information. Only in some
very specific circumstances, e.g., a person being the only user in
a certain area, linking attacks can still be successful. Even in case
such attacks are successful, the perturbation mechanisms ensure
user privacy, as the attacker can no longer determine when the sub-
ject measured the sample exactly. This protects against probability
distribution, location tracking, identity matching, and movement
boundary attacks. It also weakens personal context linking and
observation attacks. An attacker would gain only little personal
information about the user in relation to the amount of context
knowledge that is necessary to conduct a successful attack. Despite
the large privacy gain by the perturbation of the samples with the
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Figure 3: Privacy attacks and how they are prevented by the
privacy measures (assuming an uncompromised TTP).

day component, the relatively slow growth of crops results in only
marginally less data quality.

6.2 Energy Considerations

As field trials with the original Smart fLAIr revealed a high energy
consumption, the energy consumption during the LAT estimation
process is examined in this section, as well as the additional energy
consumption by the integrated MCS features, i.e. essentially the
communication to the backend server. For the evaluation of the
energy consumption of Smart fLAIr, the Trepn* power profiler is
used. According to [10], Trepn achieves the highest accuracy for
energy consumption estimation among current energy profilers for
smartphones. All measurements are conducted on a Sony Xperia Z1
smartphone (Android 5.1.1, Qualcomm Snapdragon 800 MSM8974
SoC, Kernel 3.4.0, Build 14.6.A.1.236).

First of all, the influence of various components during the LAI
estimation process on the energy consumption is evaluated. These
components are the GPS functionality, the ALS, and a live graph
that displays the currently sensed luminosity for usability purposes.
Afterwards, the additional energy consumption of the communi-
cation mechanism is measured, once with and once without TLS
usage. During the communication experiments, a new sample is
automatically created every second and sent to the backend server.
All experiments are conducted over a period of 30 minutes. As the
raw power oscillates with high frequency, a median filter over the
range of one second is applied.

The results of the experiments are visualized in Figure 4. As
expected, the active GPS sensor significantly increases the energy
consumption (cf. (a) and (b)) The same observation can be made for
the internal ALS (cf. (d) and (e)). While these components increase
the energy consumption, they are mandatory system components.

“https://developer.qualcomm.com/software/trepn-power-profiler
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Figure 4: Energy consumption of relevant Smart fLAIr com-
ponents during the LAl measurement process and MCS com-
munication in comparison with the standby consumption.

However, the live graph, which displays the currently sensed lu-
minosity, is merely a utility tool to aid the user while taking a
measurement. Despite this, it consumes more energy than GPS
sensor or the ALS (cf. (a) and (c)). This raises the general question
of how important visual aids during the measurement process are
in relation to the increased energy consumption in MCS systems.
Hence, we decided to make the live graph an optional feature of
Smart fLAIr that can be en- or disabled by the user.

As expected, the boxplots (f) and (g) reveal the higher energy
overhead of TLS. Thus, privacy mechanisms that provide user pri-
vacy without using TLS may decrease the energy consumption
of the MCS system. However, the absolute energy consumption
during the sending process is smaller than the energy consumption
during the measurement process. As the sending process only takes
a fraction of the time the measurement process consumes (roughly
1:10), the negative impact of TLS on the total energy consumption is
reduced. Thus, we strongly recommend TLS from security prospec-
tive. Overall, concerning the energy demand of the prototype app,
we believe that neither Smart fLAIr nor the additional MCS exten-
sion will have an impeding impact on the user acceptance.

7 CONCLUSION AND FUTURE WORK

This paper presented a privacy preserving participatory Mobile
Crowdsensing architecture for LAI smartphone applications. Based
on a TTP and an application-tailored perturbation mechanisms,
users can publish samples via MQTT to a backend server, while
protecting their privacy. Furthermore, the energy consumption of
the developed application was studied, revealing a trade-off between
user aiding visualization and energy consumption. The concepts
presented can be transferred to other crowdsensing applications
with similar properties, e.g., wildlife monitoring. Future work could
adjust the LAI value to the perturbed timestamps based on yet to
be developed LAI models that also include other environmental
conditions. Furthermore, other crowdsensing features, like data
quality and incentive mechanisms could be integrated into our
architecture.
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