
1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

1

© [2025] IFSA Publishing.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution or resale. The final
version was published in DAUS 2025. https://doi.org/10.13140/RG.2.2.18747.94240

Potential Analysis of Software Obfuscation to
Protect Unmanned Systems against Forensic Analysis

N. Bergmann1, E. Padilla1, and J. Bauer1

1 Fraunhofer FKIE, Cyber Analysis & Defense, Fraunhoferstr. 20, 53343 Wachtberg, Germany
Tel.: +49 228 50212-595

E-mail: {niklas.bergmann, elmar.padilla, jan.bauer}@fkie.fraunhofer.de

Summary: This paper addresses the growing need to protect unmanned systems (UxVs) from forensic analysis, notably in
hostile scenarios where systems are captured and reverse-engineered by adversaries. While UxVs play critical roles in both
civilian and military applications, their vulnerability to software extraction however poses significant risks, especially in the
context of AI-based algorithms used for sensor data analysis. Particularly in military contexts, existing legal protections are
insufficient, highlighting the need for technical defense mechanisms. We explore software obfuscation as a complementary
solution to safeguard sensitive algorithms and software architecture. The paper provides an overview of current obfuscation
techniques and introduces a modular and automated obfuscation framework. Through performance measurements and an initial
user study, we assess its costs and effectiveness in preventing forensic analysis. Our findings demonstrate the potential of
obfuscation as a robust strategy for enhancing the security of UxVs against adversarial capture.

Keywords: Unmanned Systems (UxVs), Military Drones, Cyber Security, MATE Threat, Code Obfuscation, Reverse Engi-
neering, IT Forensic.

1. Introduction

As unmanned systems continue to develop and be-
come more widespread in various areas of application,
the importance of the security and confidentiality of
the information in the systems themselves is also grow-
ing. These platforms, which are often operated
remotely or semi-autonomously over large geograph-
ical distances, are not only an integral part of civilian
applications, such as in logistics, infrastructure moni-
toring, and agriculture [1], but also play a key role in
military scenarios [2,3]. Unmanned Aerial, Ground, or
Underwater Vehicles (UAVs, UGVs, and UUVs) – of-
ten summarized with the abbreviation UxVs – are
revolutionizing the way vast information is collected
by a plurality of sensors and processed for surveillance
and reconnaissance missions [2,4].

However, a central and inherent problem for UxVs
is the threat scenario in which a system is captured by
an adversary during a mission. In such a man-at-the-
end (MATE) scenario [5], hostile actors could be able
to forensically analyze the system and extract valuable
information about its software architecture, software
technologies, and sensitive algorithms. This poses
enormous risks, as the disclosure of highly specialized
software for intelligent sensor data analysis and fusion,
especially in the field of artificial intelligence (AI), can
lead to decisive strategic disadvantages.

To counter the risk of forensic analysis, protecting
the UxV’s software is of crucial importance. Legal
protection mechanisms such as copyrights or non-dis-
closure agreements may restrict unauthorized access
and use of software by third parties in the civilian sec-
tor, but do not provide direct protection against
forensic analysis or reverse engineering. However, in

a military context, legal protection is not sufficient to
ensure protection against capture and analysis by hos-
tile forces. Technical protection measures, on the other
hand, offer direct defense mechanisms against unau-
thorized analyses of software, especially in MATE
scenarios in which systems in the field are at risk. In
practice, various approaches are used as highlighted
in [6,7]. Those contain advanced approaches such as
trusted native code or special hardware security mod-
ules (HSMs) to access critical data and execute
algorithms exclusively in a secure area of the hard-
ware. Server-side execution approaches that protect
critical algorithms by outsourcing them to external
servers, on the other hand, require a robust and secure
data connection that is not available in Denied, Dis-
rupted, Intermittent, and Limited (DDIL) military
scenarios with restricted communication.

A complementary approach for the protection of
UxVs’ software is obfuscation [6-10]. Obfuscation
hinders the analysis of binary code by deliberately
modifying the structure of the code in such a way that
its unaltered functionality is difficult to under-
stand [10]. This not only protects the software from
direct analysis, but also the sensitive algorithms and
technologies it contains.

The contribution of this paper comprises i) a com-
prehensive, yet concise overview of obfuscation
techniques (Section 2), ii) the introduction of our
modular, and automated obfuscation framework that
has been developed with representative tech-
niques (Section 3), and iii) finally, a potential analysis
of software obfuscation for the protection against fo-
rensic investigations with the help of performance
measurements (Section 4) and with an initial user
study, considering efficiency and costs (Section 5).

1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

2

2. Background & Literature Research

At the beginning of our investigations, extensive
literature research was carried out to gain an overview
of existing obfuscation methods and to categorize
them. In addition to surveying the different obfuscation
techniques and scenarios used, particular attention was
also paid to the metrics considered to quantify the qual-
ity of the respective techniques in the papers.

It resulted in an overview of 21 techniques from the
categories that were introduced in [7]: data, logic, and
abstraction transformations. This overview is shown in
Table 1 and formed the basis for the subsequent selec-
tion of exemplary obfuscation techniques. The names
of these three categories refer to the goal of obfusca-
tion. For example, the encryption of literals and values
(#1, #8) is assigned to data transformations, while the
application of encryption to parts of the functional ma-
chine code (#1, #10) falls into the category of logic
transformation. The term abstraction transformation,
on the other hand, covers methods for concealing log-
ical program units and structural assignments. This
includes functions that bundle software functionality
into separable units and allow analysts to draw conclu-
sions about the structure of the program.

Technically, obfuscation can be implemented on
different layers [7]. Some techniques can only be ad-
dressed at source code level (S), others can also be
implemented at intermediate code (compiler level C),
and some also allow implementation at machine

code (binary level B). The target of the obfuscation
also varies. The intention may be either to conceal data
D (e.g., constants DC or variables DV) or algorithms in
the code logic CL or abstraction CA [6]. The modifiable
unit ranges in a five-stage gradation according to [8]
from individual instructions 1 to the entire program 5,
as highlighted in Table 1.

The choice of metrics for the potential analysis is
inspired by a survey by Ebad et al. [9], which evalu-
ated how frequently certain classes of metrics were
used in scientific papers on obfuscation. Basically, the
authors found that 54 % of the papers examined stated
the obvious and mandatory similarity, i.e., the seman-
tic equivalence, as a metric, while only a third of the
papers considered obfuscation costs (31 %), e.g., the
increased computational effort and program runtime,
and their potency (30 %), i.e., the impact on the analy-
sis. In contrast, resilience, i.e., the resistance of the
respective obfuscation technique against recovery, and
stealth, i.e., a low detection rate, were only considered
relevant in 13 % and 12 % of the papers examined, re-
spectively [9].

Taking into account the limited UxV resources and
the specifics of MATE attacks, we decided to consider
both the potency of the individual techniques and their
costs as the decisive metrics, whereas resilience and
stealth may not necessarily be of primary relevance for
all scenarios. Based on our decades of experience in
the field of malware analysis (e.g., [12,13]), an expert
assessment of the respective techniques regarding the
metrics is finally given in Table 1.

Table 1. Taxonomy of main obfuscation techniques with an expert assessment of their respective capabilities.

Technique

Description L

ay
er

U
ni

t

T
ar

ge
t

Po
te

nc
y

C
os

ts

R
es

ili
en

ce

St
ea

lth

D
at

a

1 Coding of Constants Use Opaque Predicates (OPs) to decode constant values at runtime. S 1 DC ⏺ ○ ◐ ○
2 Increased Complexity Use of OPs to increase the complexity of the logic structures. S 3 CL ⏺ ○ ◐ ○
3 Anti-Disassembly Prevention of recursive traversal disassembly by OPs in branches. C 3 CL ◐ ○ ◐ ◐
4 Splitting of Variables Splitting variable values into several fields to hinder interpretation. S 1 DV ◐ ⏺ ⏺ ⏺
5 Merging of Variables Merging variables into one field to conceal variables’ relationships. S 1 DV ◐ ⏺ ⏺ ◐
6 Restructuring Making data structures opaquer, increasing complexity of their use. S 5 D ◐ ○ ⏺ ⏺
7 Multiple Use of Vari-

ables
Splitting fields for multiple variables to hinder flow analysis and ob-
scure variables’ semantics.

C 4 DV ◐ ○ ◐ ◐

8 Coding of Literals Decoding of values at runtime through various transformations. C 1 D ⏺ ○ ◐ ◐
9 Data Flow Flattening

(DFF)
Management of variable access through management view, which ob-
scures relationships and identities.

S 5 DV ⏺ ⏺ ◐ ○

L
og

ic

10 Coding of Functions Encryption of the machine code of entire functions to prevent them
from being analyzed.

C 4 CL ⏺ ○ ◐ ◐

11 Packing Decryption of original program by a decrypt. stub at start of execution. B 5 CL ◐ ◐ ○ ○
12 Virtual Architecture Interpretation of the program on a virtual machine with a coordinated

bytecode language.
C 5 CL ⏺ ⏺ ⏺ ○

13 Self-Modifying Code Modification of functions using edit functions to change their function-
alities at runtime.

C 4 CL ⏺ ◐ ◐ ◐

14 Control Flow Flat-
tening (CFF)

Restructuring of a function into a state machine with state variables to
disguise the control flow.

S 4 CL ⏺ ◐ ◐ ○

A
bs

tr
ac

tio
n

15 Call Graph Flatten-
ing (CGF)

Function calls through a central switching center to establish connec-
tions between functions.

C 5 CL ◐ ○ ◐ ○

16 Function Merging Use of OPs to decode constant values at runtime. S 4 CA ◐ ○ ◐ ⏺
17 Jump Insertion Use of OPs to increase the complexity of the logic of structures. C 4 CL ○ ○ ○ ○
18 Garbage Insertion Preventing recursive traversal disassembly by OPs in branches. S * CL ◐ ○ ◐ ◐
19 Overlapping Instruc-

tions
Splitting variable values into several fields to make it more difficult to
interpret the values.

C 2 CL ◐ ○ ◐ ⏺

20 Stack Pointer Merging several variables into one field to conceal relationships be-
tween the variables.

C 5 CA ⏺ ◐ ◐ ○

21 Calling Conventions Making data structures opaquer, increasing their complexity. C 5 CL ⏺ ○ ○ ◐
Legend: Layer: S source, C compiler, B binary; Unit: 1instruction, 2 basic block, 3 structure, 4 function, 5 program, * all units;

 Target: D data, DC constant, DV variable, C code, CL logic, CA abstraction; Metrics: ⏺ high, ◐ medium, ○ low.

1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

3

Fig. 1. Integration of the developed LLVM-based obfuscation framework into the existing software development process.

3. LLVM-based Obfuscation Framework

3.1 Conceptualization and Development

UxVs are highly complex cyber-physical sys-
tems (CPSs) and their software is typically very
heterogeneous in terms of the software technologies,
programming languages, and middleware, as well as
the tools and compilers used for development. For this
reason, a modular approach was chosen to integrate an
automated obfuscation into existing build chains and,
thus, to enable a language-agnostic framework that is
independent of the target architecture. The basic idea
is a component upstream of the actual build chain in
the software development process, which takes over
the obfuscation based on the source code originating
from a version control system. It then passes on obfus-
cated source code to the compilers, as schematized in
Figure 1. The advantage of this approach is that the
obfuscation framework can be seamlessly integrated
into any existing C code build chain without any
changes. As a proof-of-concept, the framework was
implemented based on the open-source compiler infra-
structure LLVM [14], since it offers a specific C
backend (CBE) [15] that could be exploited for our
purpose. Our framework is designed to be very flexi-
ble, it is extensible, and it provides, among other
things, a seed-based randomization of obfuscation pa-
rameters for automatic software obfuscation.

Based on the literature research presented in the
previous section, three related techniques from the
three categories of logic, data, and abstraction transfor-
mations, which cover different aspects relevant for
software analysis, were selected for the implementa-
tion: Control Flow Flattening (CFF), Data Flow
Flattening (DFF), and Call Graph Flattening (CGF),

cf. Table 1. The term flattening hereby refers to the
transformation of different graph structures to signifi-
cantly increase the challenge of their analysis [9]. This
is based on the insight that analysts and their tools pro-
cess the information of these graphs and are optimized
for certain patterns in them, which can be effectively
obscured by targeted transformations.

The control flow graph is a data structure that is
used by most common analysis tools. It reflects the or-
der in which instructions are executed in a function. In
this directed graph, nodes represent sets of instructions
that are executed one after the other, while the edges
describe the relationships between them, see Fig-
ure 2(a) and (b). Conditional program jumps create
branches in the graph and cycles represent program
loops. Usually, the degree of branching in graphs of
this type is low. In most cases, a function has a unique
starting point, from which various paths through the
functions can be followed.

The flattening of the control flow refers to a graph
transformation in which the original relationships be-
tween individual nodes are obscured [10]. If it is still
directly apparent which nodes (i.e., instruction sets)
can be executed next when analyzing the original con-
trol flow graph, this is usually no longer the case after
flattening. This is achieved by introducing a central
node that acts as an intermediary between all original
nodes and, consequently, becomes both the destination
of all outgoing edges and the origin of all incoming
edges. At runtime, calculations are performed within
this block to determine which block would be executed
in the original control flow. A resulting flattened graph
is visualized as an example in Figure 2(c). Without a
precise analysis of the program code within the inter-
mediary block, it cannot be adequately restored.

(a) (b) (c)

Fig. 2. Schematic representation of the control flow of a simple CRC8 implementation (a) in C code before (b) and after (c)
obfuscation by Control Flow Flattening (CFF). Artificial intermediary nodes (i.e., entry E and dispatcher D) obscure the pro-

gram’s original systematic structure. Note that the node numbering corresponds to the line numbers from the source code.

*.c *.ll

clang opt

*.ll

cbe

“Optimization"
as a Module

*.c

Software
Developer

Version Control
System

Build
Chain

Traget
Platform

Obfuscation
Framework

1. if (data == 0)
2. return 0;
3. crc = ~crc & 0xff;
4. while (len--)
5. crc ^= *data++;
6. for (unsigned k = 0; k < 8;

k++)
7. if (crc & 1)
8. crc = (crc >> 1) ^ 0xb2;
9. else
10. crc = crc >> 1;
11. return crc ^ 0xff;

1

2

3 4

11

65

7

8

10

E

D

1 2 3 4 11 5 6 7 8 10

1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

4

(a)

(b)

Fig. 3. Representation of the call graph of a program be-
fore (a) and after (b) Call Graph Flattening (CGF). For this
purpose, three central dispatcher functions have been intro-

duced, which bundle all grouped and reciprocal function
calls and, thus, conceal the original graph’s structure of the

program’s call graph (graphs adapted from [21]).

Analogous to this approach, the data flow can also

be flattened. It describes the mutual dependencies of
data and provides a basis for advanced analysis tech-
niques such as symbolic execution and decompilation.
When flattening this data flow graph, a targeted at-
tempt is made to make it more difficult to understand
the relationships between the data. Essentially, this is
done by introducing a separate memory management.
For example, reading a variable can be converted into
a function call that returns different data values based
on the parameters passed. If such functions are used for
variable accesses, this forces an analyst to perform a
complex examination of these functions.

Similar to the control flow graph, the call graph is
a structure that represents the interaction of functions,
cf. Figure 3(a). Its analysis makes it possible to iden-
tify central functions that are either particularly
important for the semantics of a program, because they
call many other functions, or its core functionalities,
because they are called by many functions. A flatten-
ing of this graph is achieved by inserting artificial
mediator functions – like CFF – which creates a graph
with few central nodes that obscures the original func-
tion interactions, cf. Figure 3(b).

Even though these three selected obfuscation tech-
niques are methodologically similar and are all based
on a transformation of graphs, their technical imple-
mentations and the resulting implications for an
analysis process are very different. At the same time,
the selection also covers the three main obfuscation
categories: CGF obfuscates the functional logic and
DFF obfuscates the relationships between data, while

CGF obfuscates the functional relationships and
thereby addresses the software’s abstraction. By vary-
ing the number of intermediaries introduced, these
flattening techniques can also be scaled in their effect
and are therefore particularly suitable for a user study-
based potential analysis.

3.2 Discussion of Related Approaches
Pioneering work in the utilization of LLVM was

already done by Junod et al. [16] a decade ago. They
proposed an LLVM-based obfuscation at intermediate
representation code level to protect software against
tampering and reverse engineering and offer CFF as a
technique, as well. However, the LLVM version they
use is obviously very outdated and, according to
Kang et al. [17], a core limitation is that users have to
build large-scale projects.

Based on Junod et al. [16], there were various de-
velopments in the following period. Choi et al. [18],
for example, use LLVM as an anti-reverse-engineering
technique for Android applications, Garba et al. [19]
as a deobfuscation framework to recover the control
flow graph of an obfuscated binary function. On the
other hand, De la Torre et al. [20] recently used
LLVM to investigate a novel obfuscation approach
based on genetic algorithms, whereas Kang et al. [17]
focused on usability and accessibility of LLVM-based
obfuscation and provided a web-based tool for this pur-
pose. In addition to the high-level obfuscation at
source code level, which our framework also uses,
their tool offers a low-level functionality based on
prior decompilation of a binary. Such an approach
could also be implemented as an extension for our
framework [17].

4. Validation of the Developed Approach

For the technical measurements of the influence of
obfuscation on the program runtime, a different func-
tional example was selected for each obfuscation
technique, which prominently depicts the respective
challenge of obfuscation and represents a stress test
scenario. For the CFF evaluation, the CRC8 algorithm
was selected, which primarily consists of a loop with
several branches, cf. Figure 2(a). It reacts very sensi-
tively to performance losses because such algorithms
are designed for processing large amounts of data.

The measurement campaign compares the perfor-
mance of the original program with the obfuscated
program automatically generated by the developed
framework, i.e., i) with the generated obfuscated bi-
nary code (flat) and ii) with its recompiled version
within the build chain modified according to Figure 1.
Note that the runtime losses that result from the latter
version compared to the direct obfuscation flat are the
price to be paid for our modular approach.

In the measurements that were conducted on a
standard desktop PC (Intel i7, 16 GB RAM), the
runtimes when processing 10, 100, and 1,000 MB of
randomly generated data (averaged over 20 replica-
tions) were found to increase by a factor approx. 5 with
increasing data sizes, cf. Figure 4. It should be noted,

1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

5

however, that this factor determined in this scenario
represents an estimate for a maximum runtime loss.
Here, the increase in the runtime is, moreover, linear
with the increase in the amount of data to be processed,
as can be derived from the figure.

Programs with frequent variable accesses or func-
tion calls were used as stress test scenarios for the
evaluation of the techniques, DFF and CGF, respec-
tively. In these scenarios, an increase in runtime of
only 40 % to 60 % was measured and, thus, a signifi-
cantly lower loss was observed. Nevertheless, it should
be noted that even such losses may not be tolerable un-
der real conditions, especially in the domain of UxVs.
Consequently, obfuscation must be introduced into
complex software systems with caution. A suitable
compromise must be found during development and
obfuscation must not be used blindly for performance-
critical program functions that are used directly to pro-
cess large amounts of data. Instead, obfuscation must
be applied specifically to individual components of
functions. Consideration may also be given to upgrad-
ing the hardware of platforms to guarantee the
necessary performance of the systems even when ob-
fuscation is used extensively.

Fig. 4. CCF cost evaluation by CRC8 runtime measure-

ments and comparison of the original with the obfuscated
flat and the obfuscated recompiled program in a stress test.

5. User Study-based Potential Analysis

Since the obfuscation of software aims to protect
against human expert analysis and reverse engineering,
it is – in addition to the technical measurements – nec-
essary to carry out empirical studies to assess the
potential of obfuscation techniques, i.e., the impact on
the difficulty of software analysis, individually per-
ceived by human subjects. However, conducting such
studies is time-consuming and labor-intensive and is
therefore rarely practiced. In addition, it is not easy to
find suitable experts in order to obtain truly meaningful
results. One study worth mentioning in this context is
the family of experiments by Ceccato et al. [22], which
comprises five studies with obfuscated Java code, each
with between 10 and 22 participants from a university
background. The authors conclude that simpler tech-
niques can often be more efficient than more complex
ones. However, their experiments are limited in terms
of the obfuscation techniques investigated. Mean-
while, other studies focus on individual techniques.
In [23], for example, the merging of variables (#5 in
Table 1) is examined in a dedicated manner.

In contrast, our user study highlights three comple-
mentary techniques that cover the main categories,
cf. Section 2. It consisted of four blocks and begins
with an introduction in which the participants are fa-
miliarized with the decompilation of a certain program
function. This is followed by three blocks, randomized
in order, in which this function is treated after the three
obfuscation techniques have been applied. After each
of these three blocks with their obfuscation examples,
the study participants were asked about the perceived
influence of the respective techniques on the analysts'
understanding of the respective program function and
also on different analysis approaches, such as static
and dynamic analysis. Finally, the participants were
also asked to rate the three obfuscation techniques in
the form of a ranking and were given the opportunity
to make comments in a free text field.

The majority of the 10 participants came from the
age groups 20 to 30 and 30 to 40, with diverse back-
grounds in software development, analysis/reverse
engineering, and obfuscation, see Figure 5. In the
study, they spent an average of around 12 min on the
individual obfuscated functions and delivered a clear
result in their assessment, as shown in Figure 6: The
impact of CFF was considered to be the most severe.
Hence, eight participants ranked CFF first in the final
ranking, while no one indicated that this technique had
little or no influence on their understanding of the ex-
emplar decompile. In contrast, the influence between
CGF and DFF was less clearly perceived. However,
both techniques were ranked second (CGF) and
third (DFF) by a majority of at least five participants.

Fig. 5. The participants in the study come from different ar-
eas but have specialist knowledge in the field of software

development, reverse engineering and/or obfuscation.

Fig. 6. Extract of the results of the user study conducted to

investigate the potential of software obfuscation on the
analysis process. The perceived impact of obfuscation on
software analysis in the study examples is individual and

varies between low and severe.

- Intern -

Software Development

Software
Obfuscation

Analysis /
Reverse Engineering

1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025, Granada, Spain

6

The comments received in the free text correspond
to the ranking provided. The participants unanimously
stated that CFF causes them the most difficulties and
would mean a considerable effort in the static analysis
of real software. Likewise, the fewest approaches on
how to methodically deal with a function obfuscated
by CFF were found here. Participants with expertise in
reverse engineering stated that dynamic analysis of the
function would be an option as long as an in-depth
analysis of the function was not necessary. The han-
dling of all three obfuscation techniques is a current
subject of research, but the literature search conducted
in this context (cf. Section 2) shows that more scien-
tific publications focus on control flow obfuscation
than on the other two techniques.

4. Conclusion & Outlook

As part of this project, a prototypical, modular ob-

fuscation framework was created that can be
seamlessly integrated into existing build chains of a
software development process. Using three exemplary
obfuscation techniques, the feasibility of automated
obfuscation was demonstrated and the protection po-
tential of obfuscating selected software examples was
evaluated in an initial user study.

The determined effect of obfuscation varies ac-
cording to the subjective perception of the analyst, but
the forensic analysis process was significantly im-
peded even for small sample programs in the study –
despite prior introduction of the analysts to the tech-
niques used. Furthermore, the costs caused by
obfuscation were examined in a measurement cam-
paign regarding program performance. It was shown
that these costs are by no means negligible but can be
scaled by the degree of obfuscation. It was therefore
concluded that it is advisable to use obfuscation only
for areas that are worth protecting.

Follow-up activities in software obfuscation envis-
age an expansion of the portfolio of available
obfuscation techniques in the developed framework. In
addition, the user study is to be extended in terms of its
scope and number of participants. For the partial use of
obfuscation, its detection rate will also be investigated,
i.e., its ability to avoid exposing protected areas of
code to analysts through forensically inconspicuous
modifications. Further exciting fields of research arise
on the one hand from a legal consideration regarding
the certification of randomized obfuscated software
and, on the other hand, from AI-supported obfuscation
as well as investigations of the resilience of obfuscated
software through AI-based software analysis.

References

[1]. M. Mammarella, L. Comba, A. Biglia, F. Dabbene, and
P.Gay. “Cooperation of Unmanned Systems for Agricultural
Applications: A theoretical framework.” Biosystems Engi-
neering 223 (2022).

[2]. S.G. Gupta, M. Ghonge, and P.M. Jawandhiya. “Review of
Unmanned Aircraft System (UAS).” Int. Journal of Advanced
Research in Computer Engineering & Technology (IJAR-
CET) 2 (2013).

[3]. R.K. Barnhart, D.M. Marshall, and E. Shappee (Eds.). “Intro-
duction to Unmanned Aircraft Systems.” CRC Press. (2021).

[4]. J. Li, G. Zhang, C. Jiang, and W. Zhang. “A survey of mari-
time unmanned search system: Theory, applications and
future directions.” Ocean Engineering 285 (2023).

[5]. P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski,
“Guest Editors' Introduction: Software Protection.” IEEE
Software 28(2) (2011).

[6]. C. Collberg, C.D. Thomborson, and D. Low. “A Taxonomy
of Obfuscatiing Transformations.” Tech. Report #148, Uni-
versity of Auckland, 1997.

[7]. S. Banescu and A. Pretschner. “A Tutorial on Software Ob-
fuscation.” Advances in Computers 108 (2018).

[8]. P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. “Sok:
Automated Software Diversity.” In Proc. of the Symposium
on Security and Privacy (S&P), Berkeley, CA, USA (2014).

[9]. S.A. Ebad, A.A. Darem, and J.H. Abawajy. “Measuring Soft-
ware Obfuscation Quality – A Systematic Literature Review.”
IEEE Access 9 (2021).

[10]. S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik
und E. Weippl. “Protecting Software through Obfuscation:
Can It Keep Pace with Progress in Code Analysis?” ACM
Computing Survey (CSUR) 49.1 (2016).

[11]. N. Kuzurin, A. Shokurov, N.P. Varnovsky, and V. Zakharov.
“On the Concept of Software Obfuscation in Computer Secu-
rity.” In Proc. of the Information Security Conf. (ISC),
Valparaíso, Chile (2007).

[12]. K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith,
“Helping Johnny to Analyze Malware: A Usability-Opti-
mized Decompiler and Malware Analysis User Study.” In
Proc. of the IEEE Symposium on Security and Privacy (SP),
San Jose, CA, USA (2016).

[13]. K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith,
“No More Gotos: Decompilation Using Pattern-Independent
Control-Flow Structuring and Semantics-Preserving Trans-
formations.” In Proc. of the Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA (2015).

[14]. The LLVM Compiler Infrastructure. Website:
https://www.llvm.org (accessed on 2025/01/09).

[15]. JuliaHubOSS. “llvm-cbe” Website: https://github.com/Julia-
HubOSS/llvm-cbe (accessed on 2025/01/09).

[16]. P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. “Obfusca-
tor-LLVM — Software Protection for the Masses.”, In Proc.
of the Int. Workshop on Software Protection (SPRO), Flor-
ence, Italy (2015).

[17]. S. Kang, S. Lee, Y. Kim, S.-K. Mok, and E.-S. Cho. “OBFUS:
An Obfuscation Tool for Software Copyright and Vulnerabil-
ity Protection.” In Proc. of the Conf. on Data and Application
Security and Privacy (CODASPY), Virtual (2021).

[18]. K. Lim, J. Jeong, S. Cho, J. Choi, M. Park, S. Han, and S.
Jhang. “An Anti-Reverse Engineering Technique using Na-
tive code and Obfuscator-LLVM for Android Applications.”
In Proc. of the Conf. on Research in Adaptive and Convergent
Systems (RACS), Krakow, Poland (2017).

[19]. P. Garba and M. Favaro. “SATURN – Software Deobfusca-
tion Framework Based On LLVM.” In Proc. of the Int.
Workshop on Software Protection (SPRO), London, United
Kingdom (2019).

[20]. J.C. de la Torre, J. Jareño, J.M. Aragón-Jurado, S. Varrette,
B. Dorronsoro. “Source code obfuscation with genetic algo-
rithms using LLVM code optimizations.” Logic Journal of the
IGPL, jzae069 (2024).

[21]. J. Duart, Zynamics GmbH “Introduction to mobile reversing”
In: CodeGate 2k10 (2010). Website: https://blog.zynam-
ics.com (accessed on 2025/01/09).

[22]. M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella. “A family of experiments to assess the effec-
tiveness and efficiency of source code obfuscation
techniques.” Empirical Software Engineering 19 (2014). [22].

[23]. A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Cec-
cato, and P. Tonella. “Assessment of Source Code
Obfuscation Techniques.” In Proc. of the Working Conf. on
Source Code Analysis and Manipulation (SCAM), Raleigh,
NC, USA (2016).

