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Abstract

A precise and up-to-date situational awareness of crop conditions is important

for site-specific agricultural management and precision farming, in general. The

continuous monitoring of relevant crop parameters has recently been shown

to have a great potential and to assist in a large number of applications. In

this context, the leaf area index (LAI) is a key parameter that is also used

in many other domains beyond precision farming. Its acquisition and assess-

ment are critical for the understanding of many aspects of crop development,

the dynamic growth process, and also growth anomalies. However, a contin-

uous monitoring using traditional LAI assessment methods is hardly possible

and very expensive. For this reason, low-cost sensors based on Wireless Sensor

Network (WSN) technology have been developed and interconnected to agri-

cultural in-situ sensor networks that are promising to estimate LAI with high

spatio-temporal resolution.

In this paper, we report on our experience of deploying a long-term crop

monitoring sensor network in field plots with different wheat cultivars (Triticum
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aestivum L.) and water regimes. By a comparative analysis with a commercial

LAI instrument, we show that our low-cost radiation-based WSN approach is

applicable to wheat and, moreover, is able to differentiate between individual

wheat cultivars as well as to detect drought stress. In addition, we present LAI

developments over time resulting from continuous estimates for each individual

wheat plot, monitored by the sensor network during the relevant time span of

the wheat growth period. At the same time, we demonstrate the demand for an

adequate filtering and processing of distributed sensor information. Therefore,

the non-negligible environmental impact is analyzed and generic filter methods

for radiation-based LAI assessment approaches are introduced. Applying these

filters, a high correlation with traditional LAI methods is achieved and credible

trajectories of LAI development with high temporal resolution are produced.

These trajectories appropriately fit the dynamic crop growth process and allow

a site- and cultivar-specific differentiation. Thus, the proposed WSN-based LAI

monitoring system enables new applications and opportunities. It can greatly

support modern crop management and breeding.

Keywords: Wireless Sensor Network, Precision Agriculture, Long-term

Deployment, Leaf Area Index, Crop Parameter Monitoring.

1. Introduction

The leaf area index (LAI) is one of the most important bio-physical plant2

parameters. It is a key enabler for many applications in various disciplines

such as ecology, meteorology, climatology and contributes to the understand-4

ing of biosphere-atmosphere interactions. For flat-leaved vegetation, LAI is

commonly defined as the dimensionless ratio of total on-sided foliage area to6

ground surface area (Jonckheere et al., 2004). Since LAI is an indicator for

physiological and structural functions of canopies and an integrative measure8

for the photosynthetic performance of plants, it is an appropriate parameter of

crop growth during the complete phenological cycle. In the context of preci-10

sion agriculture, LAI assessment can be useful for the early detection of growth
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tendencies and anomalies. Hence, LAI provides essential information for yield12

models and, therefore, also serves as an indicator for yield-reducing processes

caused by diseases or mismanagement (Carter, 1994).14

An earlier and more precise site-specific knowledge of individual dynamic

growth processes in agricultural fields will produce valuable insights for farmers.16

As a result, this knowledge will positively influence modern agricultural practices

and also improve the prediction of yield rates. Thus, it is crucial to increase farm18

output and at the same time to reduce waste and to ensure sustainability, in par-

ticular in the domain of irrigated agriculture which will become more and more20

important due to the emerging effects of the climate change. For the realization

of such a timely situational awareness with a high spatio-temporal resolution,22

there is a steadily increasing demand for in-situ environmental monitoring by

advanced Wireless Sensor Network (WSN) and Internet of Things (IoT) tech-24

nology. Aside from soil and moisture properties, the exploration of bio-physical

and bio-chemical crop parameters like fractional cover, biomass, fraction of ab-26

sorbed photosynthetically active radiation (fPAR), and first and foremost LAI

with high-quality, long-term consistent LAI products are of special interest in28

the context of precision agriculture.

WSNs are composed of a large number of small, cheap, resource- and power-30

constraint devices that are, depending on their sensing task, equipped with one

or multiple sensors (Akyildiz et al., 2002). These devices are wirelessly inter-32

connected, typically in a self-organizing manner, within a local network and re-

sponsible for data transmission and often data forwarding to a central IoT base34

station, possibly connected to the Internet. The main purpose of each individual

device in such a network is the environmental sensing of physically measurable36

phenomenas, e.g., temperature, relative humidity, or soil moisture. Precisely be-

cause of the low-cost and low-power characteristics of individual devices, they38

are suitable for large-scale and long-term deployments. The downside of this

resource-constraint is that these typically battery-driven devices have limited40

sensing accuracy only. However, this limitation is compensated by the large

number of collaborating devices, which are able to continuously provide sensor42
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information at high temporal as well as spatial resolution. Hence, WSNs are

particularly tailored for ground-based monitoring of crop parameters as has been44

realized by research since more than one decade now. A promising progress has

already been made for WSN-based LAI assessment and the potential to reduce46

time and labor costs of conventional in-situ acquisition has been shown (e.g.,

Yuan et al., 2009; Shimojo et al., 2013; Qu et al., 2014a; Bauer et al., 2016).48

Moreover, WSNs beneficially assist the validation and improvement of pheno-

logical models and parameter maps or other products derived by remote sensing.50

Using satellite or aerial imagery collected by drones, LAI information gathered

by in-situ WSNs can be extrapolated and scaled-up to large areas (e.g., Qu52

et al., 2014b). However, particularly regarding the crop LAI, current accuracy,

consistency, and temporal resolution may not meet the requirements from the54

application viewpoint of agricultural end-users.

In this paper, we continue our previous work (Bauer et al., 2016) that pro-56

poses a low-cost LAI sensor prototype and realize a long-term LAI monitoring

system. The core contributions are:58

• A method for processing and filtering WSN data is introduced that is nec-

essary to obtain feasible high-resolution LAI time series. We present this60

along with experimental results achieved by our system and a comparative

analysis with a commercial LAI device.62

• The following research question is answered: Can yield-limiting tendencies

as well as cultivar-specific differences of crop growth processes reliably be64

described by WSN-based LAI monitoring systems?

2. Background66

2.1. A Brief Review on Conventional LAI Assessment

Direct methods to assess LAI provide the most reliable and precise results.68

A common approach is to destructively assess this index by manually collect-

ing all leaves in a reference plot and measuring their individual areas directly70
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using planimeters. But also allometric approaches exist, avoiding the harvest-

ing of plants. Nevertheless, direct methods are extensively time- and labor-72

consuming, and, thus, costly and limited to small areas (Bréda, 2003; Jonck-

heere et al., 2004). Therefore, various indirect and non-destructive methods74

have been developed that derive LAI indirectly by measuring a certain related

quantity, usually the transmittance of solar radiation through the canopy. Ex-76

isting indirect methods differ in many aspects and can be grouped into in-situ

and remote sensing approaches. Traditional in-situ methods use specific in-78

struments with passive optical sensors that are commercially available, most

notably AccuPAR (Decagon Devices), LAI-2200 (LI-COR Bioscience), and Sun-80

Scan (Delta-T Devices). These instruments allow a manual estimation of LAI in

the area of interest (Jonckheere et al., 2004; Weiss et al., 2004; Bréda, 2003), but82

corresponding measurements are conducted in a point-by-point manner bear-

ing the risk of being influenced by changing weather conditions. In the re-84

cent years, the traditional ground-based assessment is complemented by digital

hemispherical photography (DHP) approaches that use upward-pointing digital86

cameras (e.g., Ryu et al., 2012) to derive LAI from digital imagery.

Complementary to in-situ methods, LAI derived from remote sensing multi-88

and hyperspectral imagery enabled by satellites or recently by drones, represents

an established indirect alternative. However, for model calibration, validation,90

and training of remote sensing products, in-situ measurements are still necessary

and conducted in practice (cf. e.g., Boegh et al., 2002; Qu et al., 2014b). Overall,92

common shortcomings of all conventional methods, in-situ and remote, are high

costs, either in terms of labor costs of manual measurements or monetary costs94

for high-resolution satellite imagery. Moreover, manual measurements or drone

campaigns are usually conducted sparsely. On the other hand, satellite imagery96

is prone to adverse weather conditions. Hence, conventional LAI assessment

has a relatively low temporal and/or spatial resolution that might not meet the98

requirements of possible applications in field-phenotyping and precision agricul-

ture.100
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2.2. WSN-based LAI Monitoring

Technological advancements highly reduced the physical size and costs of102

sensors enabling them to be used in large-scale wireless networks for many ap-

plications in a variety of domains. Using environmental sensors, WSNs gradually104

complement existing monitoring systems in the context of precision agriculture

with ground-based information to increase productivity and sustainability. Pos-106

sible applications range from site-specific irrigation, fertilization, and crop treat-

ment, to horticulture and animal monitoring (Rehman et al., 2014). Nowadays,108

they are often integrated into farm management information system (FMIS)

and IoT platforms, such as FarmBeats (Vasisht et al., 2017), for instance.110

Pioneer research of non-destructive WSN-based LAI assessment is shared by

Yuan et al. (2009), proposing an iterative scheme to deploy sensors into farmland112

and a processing of sensory data taking vary light reflections and refractions into

account. Shimojo et al. (2013) introduce a continuous LAI monitoring system114

and demonstrate the feasibility of commercial off-the-shelf (COTS) sensors for

LAI estimation in a tomato greenhouse. Another progressive system, LAINet,116

based on a specific multi-point optical sensor system is presented by Qu et al.

(2014a) who also show preliminary research on the validation of remote sensing118

products using WSNs (Qu et al., 2014b). As recent work (Qu et al., 2014a) and

also the absence of mentioning in current reviews (Rehman et al., 2014) reveal,120

WSN-based LAI assessment is still in an emerging stage. However, its potential

and opportunity to enable multi-point monitoring systems and at the same time122

to overcome the shortcomings of traditional point-by-point measurements have

been repeatedly shown.124

2.3. LAI Estimation

In our previous work (Bauer et al., 2016), we presented a novel low-cost sen-126

sor for a radiation-based LAI assessment and show the feasibility of the sensing

system and promising results in maize (Zea mays L.) cultivars. The devel-128

oped prototype enhances a COTS photosynthetically active radiation (PAR)
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sensor platform with a diffuser and special optical filter. Following a simplis-130

tic approach, the sensor is not assumed to deliver more accurate results than

commercial instruments. However, due to the potentially large number of repli-132

cated measurements and distributed sensors, a continuous monitoring with fine-

grained temporal resolution during the entire crop growing cycle is enabled.134

Similar to the approach of Shimojo et al. (2013), we use the Monsi-Seaki

model (Monsi and Saeki, 1953). This simplified model is based on the inversion136

of the Beer-Lambert law and, under certain assumptions (cf. Weiss et al., 2004)),

derives LAI estimates from the transmittance T of solar radiation through the138

canopy. The relation can be formulated as:

LAI = �! ln(T ) = �! ln

✓
B

A

◆
, (1)

where T is obtained be the ratio of perceived radiation below (B) and above (A)140

the canopy. Thus, basically two measurements and sensors, respectively, are

necessary to estimate LAI. However, the indirect assessment is very complex142

in practice and there are many other parameters that influences this estimation

such as the solar zenith angle (SZA) and weather factors, for instance. Accord-144

ingly, a correction factor ! is used to rectify the reverse exponential relation

between LAI and transmittance. This factor is cultivar- and site-specific and,146

among others, mainly affected by the SZA and the canopy structure, partic-

ularly leaf distribution, mean leaf angle (MLA), and clumping. In general, !148

is unknown but can be determined empirically, as already done for maize and

our prototype (Bauer et al., 2016). However, for winter wheat, ! is not yet150

identified. Thus, it is initial assigned with !initial = 1.24 here, which is inspired

by a parameter set of the LAI-2200 (cf. Bauer et al., 2016) and later adjusted152

using a comparative analysis with the SunScan instrument introduced in the

following section.154

Another noteworthy aspect is that neither the developed sensor prototype

nor the SunScan instrument is able to measure the actual true LAI due to the156

presence of non-photosynthetic canopy elements such as branches and stems that

cannot be distinguished adequately. Thus, several alternative terms have been158
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proposed to describe the estimates obtained by those and similar approaches,

most notably the terms plant area index (PAI) and effective LAI (cf. Jonck-160

heere et al., 2004). However, in this paper, we still use the term LAI for con-

sistency, but distinguish between the so-called green LAI (GLAI). It refers to162

the sampling strategy in which yellow leaves in progressing phenological stages

are intentionally excluded from PAR measurements in order to focus on the164

photosynthetically active leaf area.

2.4. Reference Instrument and Ground Truth Data166

Ground truth LAI estimates are assessed by regularly measurements using

the SS1 SunScan, a widely-used canopy analyzer that is optimized for agricul-168

tural crops with low regular canopies. The instrument is also radiation-based

and has a 1 m probe with an array of 64 PAR sensors to measure the transmit-170

tance. The additional radio-linked BF3 Sunshine Sensor is used for simultaneous

reference sampling. LAI measurements were conducted on nine selected days172

during the wheat growth period, each around noon under stable weather condi-

tions (sunny and unclouded) according to the GLAI sampling strategy, i.e. by174

holding the probe just below the green leaf layer.

3. WSN Architecture & Deployment176

3.1. Deployment Site

The deployment site is located at Braunschweig, Germany, on experimen-178

tal fields of the Julius Kühn-Institute (JKI) (52.296° N, 10.436° E; 75m eleva-

tion). During the 2016 growing season, the maximum impact of water short-180

age and drouth stress on wheat phenology, physiology, and yield was investi-

gated. Therefore, different wheat cultivars were grown: (1) in a mobile rain-out182

shelter (dry environment; referred to as ROS) and (2) in a nearby irrigated

control (wet environment; referred to as CON). The ROS is a foil covered184

shelter (cf. Fig. 1(a)) that automatically moves over the experimental plots dur-

ing rainfall periods via a rail system. For further details of the ROS site re-186

fer to Schittenhelm et al. (2014). The main WSN deployment was operating
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(a) ROS with Hystar and Gordian

plots at DOY178 (sensors 0x1, 0x2,

0x5, 0x6).

(b) CON with Hystar and Gordian plots

at DOY105 (sensors 0x3, 0x4, 0x7, 0x8).

(c) Above ref-

erence sensors

(0xA, 0xB)

Figure 1: Sensing regions at different locations.

for 74 days in 2016 (day of year (DOY) 105 – 178). Two particular high yield-188

ing wheat cultivars were observed, each in the ROS (Fig. 1(a)) and the CON

field (Fig. 1(b)). The first one is Hystar (referred to as cultivar 1), an early ma-190

turing hybrid wheat, and the second one is Gordian (referred to as cultivar 2),

a cultivar with medium maturity.192

3.2. Real-World Challenges

The main reasons of challenges for outdoor deployments in the agricultural194

domain can be grouped into two categories: (1) environmental and (2) wildlife

induced challenges. Our key approach in order to cope with both types of196

challenges is remote monitoring of all components and redundancy (cf. Bauer

and Aschenbruck, 2018). For the radiation-based LAI assessment, two essential198

measurement positions are required: a ground sensor below the canopy and a

corresponding above reference sensor (Fig.1(c)). For redundancy, three above200

references are used and, in each cultivar, two ground sensors are deployed. More-

over, wireless (IEEE802.15.4) and wired (USB) connections are used in order202

to increase redundancy of data delivery. While there is a power source avail-

able at the ROS, solar power solutions had to be used for the CON area and204

the above reference sensor stand. Unfortunately, the installed solar panel and
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(a) Condensation water under

the diffuser cap of sensor 0x7

(DOY 178).

(b) Condensation water under the diffuser cap of

reference sensor 0xB and traces of bird droppings

(DOY 125).

Figure 2: Impressions of a certain impact of harsh outdoor environments on WSN equipment.

batteries were not fully reliable and led to temporary disruptions of the deploy-206

ment. Furthermore, it turns out, that sensor cases were not completely sealed

and water-resistant. As a consequence, condensation water occurs under the dif-208

fuser cap of some sensors, cf. Fig. 2. Suchlike challenges could easily be mitigated

by industrial outdoor cases, enhanced solar power equipment, and professional210

uninterruptible power supply systems. However, it is hardly possible to tackle

all challenges which potentially could arise in real-world deployments. In prac-212

tice, a non-disruptive WSN operation could not be guaranteed and erroneous

sensors could never be totally prevented. Thus, we believe that sensor redun-214

dancy is the most reasonable approach to cope with adverse and unpredictable

situations. Hence, it is crucial to realize a low-cost sensing platform as proposed216

with our COTS prototype.

3.3. Architecture218

According to the concept described by Bauer and Aschenbruck (2018), clus-

ters of four sensor devices that are attached to a Raspberry Pi via USB are220

used for individual wheat plots. These clusters are connected to a central base

station using IEEE 802.15.4 and for redundancy purposes also interconnected in222

a WLAN. The concrete setup is sketched in Figure 3 and a key data overview of
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Figure 3: Communication architecture of the deployment. Three self-sufficient sensing clusters

are connected via WLAN links with a central gateway node providing UMTS-based Internet

connectivity and FMIS integration.

the deployment is given in Table 1. Using public land mobile networks (PLMN)224

connectivity (i.e. UMTS cellular network), the base station acts as Internet gate-

way. It is responsible for sensor data upload and also for remote access to the226

WSN. The overall architectural concept consists not only of the WSN itself,

but also of a server that offers web-based monitoring, a database system, and228

allows remote reconfiguration and reprogramming. It is noteworthy, that the

goal of our deployment is neither to realize a complete and mature productive230

system, nor a sophisticated and efficient WSN. Instead, a functional sensing

system that demonstrates the feasibility of providing a continuous LAI moni-232

toring is developed. Furthermore, by intentionally oversampling PAR, our aim

is to gather an extensive data set in order to analyze factors influencing LAI234

estimation.

3.4. Hard- and Software236

The low-cost IEEE802.15.4/ZigBee compliant sensor prototype introduced

in our preliminary work (Bauer et al., 2016), i.e. a TelosB-based platform (8 MHz238

TI MSP430 MCU, 10 kB RAM) is used as basic sensor. Amongst other onboard-

sensors, the COTS platform features an appropriate PAR sensor, S1087-1, man-240

11



Table 1: Deployment overview.

Date 2016/04/14 – 2016/06/26 (DOY 105 – 178)

Duration 74 days

# locations 2 (ROS and CON)

# cultivars 2 (Hystar and Gordian)

# sensors 11 ( 8 ground + 3 reference sensors, 2 sensors/plot)

Sampling rate 30 samples/hour

Sampling phase 21 hours/day (03:00 – 00:00)

Night phase 3 hours/day (00:00 – 03:00)

Max. # samples/sensor Per day: 630 (68 kB), overall: 46 620 (⇡5MB)

Overall data volume 77.3MB (incl. additional error logs)

ufactured by Hamamatsu. For a proper LAI assessment, the sensor was en-

hanced by two essential components: (1) a diffuser cap improving the stability242

of PAR readings and (2) a blue band-pass filter to select the blue spectrum

of visible light and, thus, increase the contrast between green vegetation and244

sky. Details concerning this setup can be found in (Bauer et al., 2016). The

raw sensor readings can be converted into the unit lux according to a formula246

provided by the manufacturer. However, due to the sensor modification, a re-

calibration would be necessary. Because such a conversion is not required for248

the measurement of the transmittance, it is left out here. For convenience, we

still use the term PAR readings for unconverted and also filtered digital raw250

readings obtained by the sensor.

Similar to Mo et al. (2009) and Qu et al. (2014a) and prior to the deployment,252

a relative calibration was conducted in a controlled laboratory environment by

mutual determination of correlation coefficients assuming a linear relation of254

the solar radiation response between all sensors. Therefore, sensor 0x1 was ar-

bitrarily selected as reference sensor. This calibration is particularly important256

because of the possible production deviations of sensor cases and modifications.

The basic acquisition software is also adapted from the sensing application258

introduced in Bauer et al. (2016). In the modified version, the sensor node uses

a constant sampling rate of 30 samples/h. Amongst others, each sample consists260

of multiple PAR sensor readings that are taken in a short burst of 25 readings
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with a spacing of 50 ms. This is done in order to get more reliable averages and262

also to observe small-scale fluctuations. To differentiate between a single PAR

samples in such a PAR bundle, the former is hereinafter referred to as PAR264

reading. The term PAR sample is used for the arithmetic mean of a bundle.

As a reliable operation of various components during the entire deployment266

is explicitly not expected, certain safety mechanism have been implemented.

Details can be found in Bauer and Aschenbruck (2018).268

3.5. Sensor Data Set

A holistic overview of the entire PAR data collected in the WSN deploy-270

ment is shown in Figure 4, visualizing data streams of all sensors involved. Each

stream has a daily pattern that follows the daily course of the sun, i.e. the272

increasing solar irradiation in the first half of the day and decreasing irradiation

in the second half, both naturally weakened by atmosphere and sky conditions.274

Due to the unforeseen power supply challenges, the WSN part in the CON

plots (cf. Fig. 3), started its operation with a certain delay, at DOY125 (upper276

x-axis), still timely to monitor relevant vegetative changes. The overview in Fig-

ure 4 provides a first impression of the quantity of data, but also of the data gaps278

due to the harsh environment and technical problems. It turns out, that the re-

dundancy in our design was actually necessary in many situations. Moreover, it280

can be seen by the irregular and fragmentary data streams of ROS sensors (green

shaded) that there were software issues in the beginning phase of the deploy-282

ment (DOY 105 – 119) that could be successfully fixed. However, irregularities

of CON sensors (blue shaded) are often caused by the under-dimensioned solar284

power equipment. In fact, the prototypical deployment clearly leaves room for

improvement, but still approx. 40 to 80 % of theoretically possible samples were286

successfully delivered to our database, as noted in Figure 4. Thus, an extensive

data set is available.288
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4. Methodology

For the evaluation of the experimental WSN-derived LAI estimates, a com-290

parative analysis to estimates manually measured with the SunScan instrument

briefly introduced in Section 2.4 is conducted. These measurements are seen292

as (substituted) ground truth for the validation, cf. Sec. 2. Assuming a linear cor-

relation between both set of estimates, we use the Pearson product-moment cor-294

relation and a linear regression to compute the correlation coefficients. Hence,

the key metric to evaluate the quality of our results is the coefficient of determi-296

nation r2 representing the level of agreement with the SunScan values. But also

other numerical parameters are considered as the slope ↵ and the interception298

� of the regression line, as well as the normalized RMSE (nRMSE) defined as

nRMSE = RMSE/(max(LAIWSN )�min(LAIWSN )).300

The WSN deployment produced a large amount of data during the relevant

part of the growing season of wheat cultivars observed in this paper. Each in-302

dividual sensor provides data streams containing various information. For LAI

assessment, the only relevant information is the PAR bundle of each sample.304

Hence, the data processing is limited to these bundles and the data analysis to

LAI information, respectively. The entire data processing and analysis can be306

clustered into six major phases as illustrated in Figure 5. The most challeng-

ing part is an appropriate processing chain from raw sensor samples to usable308

LAI estimates. First, raw samples need to be adequately preprocessed and fil-

tered. Then, preliminary LAI values can be estimated that subsequently need310

to be post-processed before they can be reasonably compared to ground truth

data in the closing comparative analysis. LAI estimates are derived according312

to the simplified method in Equation 1 (Sec. 2.3) using a multi-angle approach.

That means, PAR measurements are conducted over the entire day with dif-314

ferent solar incident angles and daily averages involving the entire SZA range

are computed. Apart from evaluating the quality of WSN-based LAI estimates316

by the comparative analysis and the impact of data processing and filtering, a

secondary goal is to specify a proper correction factor. Based on the ↵ param-318
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Figure 5: Processing

flow diagram: The

processing and filter-

ing chain from raw

sensor data to rea-

sonable LAI estimates

and their comparative

analysis with SunScan

data.

eter achieved by the sufficient correlation, the initial assignment of ! could be

calibrated, provided that the WSN data is processed adequately.320

In order to link LAI data with weather information, we benefit from the close

proximity (approx. 1 km) of the JKI site to the Agrometeorological Research322

Centre of the Deutscher Wetterdienst (DWD). We use the weather observation

data of this official weather station (ID 662)1 which is freely available in hourly324

resolution. The SZA is calculated based on the longitude, latitude, and local

sampling time.326

5. Data Processing

5.1. Preprocessing of WSN raw data328

The first step of the preprocessing phase is the calibration of individual

sensor data using the calibration factors, determined a priori as mentioned in330

Section 3.4. Nevertheless, due to the real-world nature of gathered sensor read-

ings, (calibrated) raw data could be very noisy. On the one hand, reasons could332

be small-scale environmental noise (in < seconds range) as induced by mea-

surement inaccuracies of individual sensors or by fluctuations below the canopy334

caused by wind. This challenge is mitigated by averaging multiple consecutive

1ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly
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PAR readings of each bundle in each measurement sample (cf. Sec. 3.4). Using336

this average, a simple minimum threshold (PARTHRESH ) is applied that elimi-

nates readings in the very low illuminance intensity range. This is because these338

readings are likely to not provide reliable information because intensity is too

low for the ADC resolution as already noticed by Shimojo et al. (2013). We use a340

minimum of 35 (raw unit) here. On the other hand, there is large-scale noise (in

minutes to days range) unavoidably induced by unstable weather conditions as342

also indicated by existing research (Qu et al., 2014a) or even by single leaves

adversely covering sensor caps for a certain period of time, for instance. This344

kind of noise requires a processing of adjacent samples. For that purpose, we

decided to apply a median filter for data smoothing and determined a window346

size of 11 (i.e. five adjacent samples and in an overall period of ±10 min) to be

reasonable to smooth consecutive (averaged) PAR samples.348

The reason of deploying sensor pairs in every wheat plot and using three

above reference sensors, respectively, is basically redundancy for failure safety.350

However, if readings from different sensors are appropriately merged, pairwise

sensor readings can also enable noise mitigation and, thus, improve data qual-352

ity. To merge sensor pairs, we use the smoothed data and differentiate between

below and above sensors. For the above sensor triple, we use the maximum354

function for merging because these sensors are intended to measure the maxi-

mum illuminance intensity of the unobscured sky. Hence, if a single reference356

sensor is affected for any reason, it has no negative impact on the merged data.

Thus, the maximum function ensures that the merged data is not impaired as358

long as at least one of the above sensors provides reasonable readings. This

feature is very crucial since unstable cloudiness or obstacles in the surrounding360

area can result in situations where some sensors were more shaded than others.

Moreover, in our scenario, we occasionally observed birds of prey sitting on the362

sensor stand (cf. Fig. 2(b)) and heavily obscuring above sensors.

Figure 6 visualizes the very strong linear correlation of individual sensor364

readings of above reference sensors that are calibrated but not yet smoothed

as a scatter plot. Only a slight deviation between readings from sensor 0xA366

17



(a) Above sensors (0xA, 0xB), located

next to each other.

(b) Above sensors (0x9, 0xA), spatially

distributed (92 m).

Figure 6: Pairwise correlations of calibrated PAR samples from above reference sensors.

and 0xB, that both are located on the stand very close to each other, can be

observed (Fig. 6(a)) and only a very few outliers exist, probably induced by birds368

sitting on the stand. This additionally confirms that the sensor a priori relative

calibration is effective. Moreover, the PAR data set is divided into data from the370

first half (gray) and from the second half of the deployment (blue). Regarding

the condensation water under the diffuser cap of sensor 0xB (cf. Fig. 2(b)) that372

arose during the first half, it turns out that the adverse impact of condensation

water is very limited. Indeed, the corresponding readings of the affected sensor374

turned out to be only a little attenuated as the data of the first half (blue) reside

mainly slightly above the regression line (red). After detecting the condensation376

water problem at DOY 125, we re-sealed the sensor leading to the very high

correlation in the second half of the deployment.378

In contrast to the strong similarity of sensor 0xA and 0xB, the correlation

of sensor 0x9 and 0xA (Fig. 6(b)), and 0x9 and 0xB vise versa, shows more380

anomalies. Here, the impact of sensor 0x9’s proximity to the ROS with its

shading or reflections can be observed by the distributed outliers below the382

regression line. Additionally, the impact of trees in the vicinity of the 0xA-0xB

sensor stand that result in occasional shading of both sensors, most notably at384

higher SZAs, can be seen by the structured outliers above the regression line,
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and, hence, leading to an overall asymmetrical outlier pattern in this figure. In386

general, there is a high consistency across all above sensors and the maximum

function for merging appears to be an appropriate choice.388

With regard to the merging of below sensor pairs, the maximum function

is not reasonable since it would intensify the impact of outliers. The same390

would apply in case of the minimum function. We found the arithmetic mean

of (roughly) simultaneously measured readings to be an appropriate function for392

merging that kind of sensor information. Although a strong linear correlation

can be observed again, there is an apparent difference between below readings394

of individual sensors at the same location and in the same cultivar induced by

small- and large-scale noise and crop heterogeneity. This difference is exemplar-396

ily shown for both sensors deployed in cultivar 1 in the ROS by a scatter plot

in Figure 7(a). Even though there are extreme outliers in sensor readings, these398

outliers are pretty symmetric since the regression line lies relatively close to the

1:1 line which further justifies the arithmetic mean function for merging. As400

the subsequent analysis and plausibility checks of all sensor readings revealed,

there is one exception in our deployment where an imbalance within a sensor402

pair exists. In the irrigated control (CON) cultivar 2 plot, there is a significant

deviation of sensor 0x8, as demonstrated in Figure 7(b). The reason of the de-404

viation is unclear and might be the result from an incorrect calibration or an

adverse positioning of the sensor. However, we believe that this kind of inaccu-406

racy will be likely in large-scale productive WSN systems. Thus, we decided to

not exclude the impaired sensor from our comparative analysis, but occasionally408

refer to results that do not include the possible errors from sensor 0x8 in order

to highlight the achievable potential of WSN-based LAI monitoring.410

Excluding the exception mentioned above, the pairwise scatter plots of cal-

ibrated PAR samples from below sensors in Figure 7 allow additional insights412

into the great potential of our approach: The choice of particular sensors for the

pairwise comparison does characteristically influence the correlation coefficients,414

most notably r2 as demonstrated in Figure 8. That means, there is a cultivar-

specific difference between the correlation of sensors in different cultivars at the416
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(a) Same cultivar and same location:

ROS cultivar 1 sensors (0x1, 0x2).

(b) Same cultivar and same location:

CON cultivar 2 sensors (0x7, 0x8).

(c) Different cultivars and same location:

ROS cultivar 1 vs. 2 (0x1, 0x5).

(d) Same cultivar and different locations:

ROS vs. CON cultivar 1 (0x1, 0x3).

Figure 7: Pairwise Correlations of calibrated PAR samples from below sensors.

same location compared to sensors in the identical plot (same cultivar, same

location), cf. Fig. 7(a) vs. (c) and Fig. 8. Moreover, this difference is more signif-418

icant if sensors within the same cultivar but in different sensing locations are

considered (same cultivar, different locations), cf. Fig. 7(d) and Fig. 8. Thus, it420

already appears that our approach is able to distinguish between the cultivar-

specific crop growth characteristics (cultivar 1 vs. 2) and the location-specific422

difference in growth trajectories induced by drought stress within the ROS. In

both cases, there is a noteworthy difference with regard to the DOY when read-424

ings are gathered. Whereas readings from the first half (gray) in Figure 7 do not
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Figure 8: Pairwise correlations

of calibrated PAR samples from

sensors in different correlation

categories and the potential to

differentiate between wheat cul-

tivars (same vs. different culti-

vars) and sensing location (same

vs. different locations).

essentially differ from readings of the second half (blue) concerning their sym-426

metry, there is a clear mismatch in symmetry of both classes if both sensors are

positioned in different cultivars and/or locations. This observation additionally428

confirms that cultivar- and location-specific differences are provoked by drought

stress. Finally, the differentiation between both cultivars in Figure 8 (same cul-430

tivar, different locations) reveals different characteristics of both cultivars. A

lower variance and a higher median of the determination coefficient is achieved432

by cultivar 2 if samples from ROS and CON are compared. Hence, in this ex-

periment, cultivar 2 (Gordian) performs better in the harsh ROS environment434

regarding the LAI.

5.2. LAI-Estimation436

Given the preprocessed PAR samples that have been calibrated, smoothed,

and merged, LAI estimation for each wheat plot is straight-forward. LAI es-438

timates can be easily derived by the generic formula in Equation 1 (Sec. 2.3)

using samples of the same interval of merged below sensor readings and the440

corresponding above reference readings along with the preliminary correction

parameter ! = 1.24. However, this results in preliminary LAI estimates only,442

that possibly highly vary over the time of day, as exemplarily demonstrated

by different daily snapshots visualized in Figure 9. In the upper part of each444

subfigure, merged PAR samples of each position are plotted over the time of
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the day, i.e. all wheat plots and the corresponding above reference (black). The446

resulting LAI estimates are included in the lower part (second y-axis). The

snapshots already provide a first impression for the daily LAI variance and also448

indicate that this variance is very weather-depending. On sunny and unclouded

days (cf. Fig. 9(a)) there is a very pronounced daily pattern, namely the daily450

low of decreased LAI estimates from roughly 09:00 to 18:00. If the weather

is cloudy or rainy, the daily LAI time series are apparently much more sta-452

ble (cf. Fig. 9(b) and (c)). Consequently, LAI variance changes accordingly, if

weather conditions are changing on days with variable weather (cf. Fig. 9(d)).454

Another aspect that can be observed in Figure 9(b) is the effect of the ROS that

covers the corresponding wheat plots during periods with rainfall, resulting in456

an invalid LAI increase on the ROS site.

In conclusion, the daily LAI variance shows that it is very reasonable to458

link sensor data with weather information and to investigate the environmental

factors that dominate the weather-dependency. Moreover, it is important to460

note that a suitable post-processing of daily LAI estimates is necessary to reduce

potential noise and smooth LAI time series in order to obtain meaningful growth462

trajectories.
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5.3. Post-Processing and Ground Truth Preparation464

The SunScan estimates, serving as ground truth reference, are available for

certain days in the wheat growth period only, as described in Section 2.4. On466

that days, SunScan measurements have been conducted once, at a single point

in time. This has two consequences:468

(1) We initially use the daily arithmetic mean of WSN-based LAI estimates

for the comparison. Then, additionally to the daily means, a moving average470

filter is optionally applied, similar to the multi-day aggregation proposed by Qu

et al. (2014a) who use a 8 day window and found 3-8 days as a reasonable period472

to capture the dynamic growth process of leaves. Therefore, we calculate the

moving average (referred to as MOVAVG) with a sampling window size of 7,474

i.e. ±3 adjacent days, in order to smooth the overall LAI time series and also

to bridge gaps where daily means are missing, e.g., due to technical problems.476

(2) An option to approximate SunScan LAI estimates on a daily basis in or-

der to enlarge the observation size N for a later correlation analysis is also con-478

sidered. We tested different approximation methods and finally chose (i) LIN:

the simple linear interpolation between individual daily value, and (ii) POLY:480

a polynomial approximation (degree = 5) as reasonable candidates to approx-

imate the real LAI trajectories. Both methods can optionally also be applied482

to the daily WSN LAI estimates, complementary to the moving average. The

effect of the different approximation methods is exemplarily shown in Figure 10484

for both cultivar 1 plots.

In Figure 10(a), the ground truth data for the comparative analysis and its486

different approximations are visualized. Usually, drought stress leads to a lower

LAI maximum (LAImax) that is reached earlier in the growing season as can also488

be observed in the figure, clearly emphasized by the POLY approximations. For

that reason, LAImax is an important parameter of crop physiology. Note that490

both peaks and the temporary decline of the ROS curve (green) at DOY146

are caused by occasional irrigation which was conducted in order to prevent492

excessive drought stress. The corresponding LAI time series obtained by the

WSN with data processing and pre-filtering (Fig. 10(b)) already show promising494
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(a) Manually measured SunScan LAI

estimates.

(b) Daily averaged WSN LAI estimates.

Figure 10: Approximation of LAI estimates over the wheat growth period for all sensing

locations of the deployment (ROS locations are shaded in green, CON in blue).

similarities. However, during the last third of the deployment period (ripening

phase), i.e. approximately from DOY161, there is a systematic discrepancy496

in the CON LAI curves. The WSN CON time series remains at a high level

compared to a clearly decreasing SunScan series. The reason for this discrepancy498

is that SunScan series actually estimate the GLAI (cf. Sec. 2.4). In contrast,

due to fixed sensor locations, the WSN approach is not able to differentiate500

green from yellow leaves. Neverthelss, the development of GLAI can be entirely

monitored by the WSN until LAImax is reached.502

5.4. Preliminary LAI Correlation Results

The processing chain presented in the previous subsections creates LAI es-504

timates and enables a preliminary comparative analysis of WSN and SunScan

LAI estimates. In the following, results of this analysis are briefly introduced506

and, at the same time, impacts of different previous processing steps are shown,

before being improved by important filter mechanism in the next section.508

Due to the GLAI issue, the comparison is limited to the period DOY120 –

161 and excludes the ripening phase. Table 2 summarizes the results according510

to the metrics introduced in Section 4. Here, naïve represents the setting with
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Table 2: Correlation Evolution – Part I.

naïve Preprocessing Post-processing w/o sensor 0x8

Metric MR ML PP MR ML PP MR ML PP MR ML PP

r2 0.76 0.46 0.71 0.80 0.66 0.82 0.88 0.81 0.82 0.88 0.85 0.78

N 22 158 158 22 149 158 22 160 158 21 155 158

↵ 1.62 0.83 1.26 1.30 0.93 1.22 1.30 1.19 1.22 1.14 1.10 1.25

� -0.28 1.04 0.41 -0.04 0.64 0.17 0.03 0.20 0.17 0.25 0.30 0.10

nRMSE 0.62 0.42 0.49 0.34 0.24 0.32 0.31 0.29 0.32 0.08 0.09 0.12

(MR = moving averaged WSN vs. raw SunScan estimates, ML = moving averaged WSN vs. linear

approximated SunScan estimates, PP = polynomial approximated WSN vs. SunScan estimates

r2: coefficient of determination, N : sample size, ↵: slope , �: intercept)

nearly unprocessed data (only PAR bundles are averaged). Then, this setting is512

successively extended by minimum PAR threshold (PARTHRESH ), by applying

a priori determined calibration factors, by the median filter (preprocessing), and514

finally by the moving average on daily scale (post-processing). Moreover, due to

the observed deviation of sensor 0x8 (cf. Sec. 5.1), there are two additional set-516

tings, one ignoring sensor 0x8 when merging the cultivar 2 samples of the CON

plot, and the other one, completely ignoring cultivar 2 CON plot in the compar-518

ative analysis. For each setting, three combinations of LAI approximations are

considered: MR, ML, and PP, representing the approximations MOVAVG (M),520

LIN (L) and POLY (P), where the first character belongs to WSN and the second

to SunScan LAI time series, respectively.522

The core message of the results listed in Table 2 is visualized in Figure 11

that highlights the evolution of correlation quality improvements for different524

approximation settings. These (preliminary) results show a significant improve-

ment achieved by an adequate processing and, furthermore, already exhibit a526

high level of correlation.

6. Filtering528

An appropriate filtering of raw sensor data is crucial to further improve the

quality of our approach and can be integrated in the preprocessing phase of the530

processing chain as sketched in Figure 5. During the data analysis, we explored

and developed various filter mechanisms and present the most important filters532
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Figure 11: Impact of basic data processing phases on the quality of ground truth correlation.

in this section. First, a generic method is introduced. Then, application-specific

approaches are proposed that are tailored to WSN- and radiation-based LAI534

monitoring.

6.1. ICA Filter536

A very powerful technique from the domain of signal processing is the in-

dependent component analysis (ICA) that can be applied in order to separate538

additive subcomponents from a multivariate signal. However, the ICA is a blind

source separation, i.e. it works without the aid of additional information about540

the mixed input signals but also does not provide any information about the

separated outputs. Transferred to the PAR time series, our goal is to eliminate542

undesired interfering signals. Possible reasons of interfering signals are shading

effects from the environment or temporal technical failures, for instance, that544

are assumed to meet the requirements of being non-Gaussion and statistically

independent. However, only for the solar irradiance signal captured by the three546

above reference sensors, the ICA is reasonably applicable and enables a filtering

of unintended noise in the reference signal. We use a time window of 7 days for548

the ICA of the mixed above signals with a zero padding for missing values and

identify one output signal as reasonable candidate of an interfering signal. Then,550

a proper threshold is evaluated and used to create a binary filter. Regarding
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the following LAI estimation, the elimination of above reference samples also552

implicitly discards ground samples since simultaneous pairs are required for LAI

determination, cf. Sec. 5.2.554

6.2. Assessment-specific Filtering

On the particular site of our deployment, the ROS purposely covers the556

wheat plots during rainfall periods and affects LAI estimation. Hence, such peri-

ods need to be filtered, although we observed only a slight impact of precipitation558

in the CON plots that often seems to be negligible, e.g., at DOY 145 (Fig. 9(b)

in Sec. 5.2). However, the overall precipitation during the deployment was rel-560

atively rare and low. Thus, a sound scientific statement on the impact of rain

is not possible using our data set. For the RAIN filter, we apply a conservative562

approximation of hourly weather information leading to a comparative strong

binary filter. Note that if accurate information about current precipitation is564

not available, a raindrop sensor could be easily integrated into the WSN system

in order to assist such a rain filter.566

The analysis of the probability distribution of multiple PAR readings within

a PAR bundle of individual sensor samples shows a very low standard deviation568

of bundles with occasional outliers. The cause of such outliers is twofold. On the

one hand, PAR measurements at low illuminance tend to have lower accuracy,570

and thus, more variance, particularly in discretized digital readings. Affected

sensor samples are mainly already filtered by the PARTHRES mechanism in572

the preprocessing phase. On the other hand, short-term dynamics in the plant

stock caused by leaf movements that are primarily triggered by wind results574

in an increase of the variance. As the latter reason of variance is induced

by environmental dynamics, we found a characteristic difference between the576

variance of bundles gathered within wheat plots and of bundles captured by the

above references that are affected by leaf movements.578

With regard to the filtering of raw sensor data, a wind filter would be possi-

ble if accurate wind information is available for the certain site. However, since580

wind is the secondary quantity affecting the PAR deviation, we prefer a pure
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(a) STDPAR filter. (b) ICA filter. (c) RAIN filter.

Figure 12: Filter masks of the proposed filters in a temporal binary matrix representation and

their different distributions.

standard-deviation-based filter (referred to as STDPAR filter). Hence, based582

on the deviation determined for each data stream in the preprocessing phase,

we create a sensor-specific binary filter and discard all PAR samples exceeding584

the threshold. A corresponding filter mask for sensor 0x1 is exemplarily shown

in Figure 12(a) along with the filter masks of both previous filters. In each fig-586

ure, the temporal distribution of filtered intervals (black) can be observed. The

STDPAR filter mainly eliminates samples in dawn and dusk periods that tends588

to be unreliable due to low illuminance as well as samples impacted by wind

during the day. The ICA filter mask does not particularly focus on dawn/dusk590

periods (Fig.,12(b)) and, similar to the RAIN filter (Fig. 12(c)), it has no mean-

ingful pattern.592

7. Correlation Results

Starting from the preliminary correlation results of Section 5.4, the impact594

of each proposed filter and the additional improvement regarding the accuracy

and consistency of LAI time series are again evaluated by a comparative analysis596

to SunScan LAI estimates. The results are quantified in Table 3 and Figure 13.

It turns out that the proposed filtering is an appropriate fine-tuning optimiza-598

tion that has a comparatively lower impact than the basic data processing. It

results in a slight, yet effective increase of the already high determination co-600
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Table 3: Correlation Evolution – Part II.
processed + ICA filter + RAIN filter + STDPAR filter

Metric MR ML PP MR ML PP MR ML PP MR ML PP

r2 0.88 0.81 0.82 0.89 0.82 0.82 0.89 0.83 0.83 0.91 0.85 0.84

N 22 160 158 22 160 158 22 156 158 22 140 158

↵ 1.30 1.19 1.22 1.25 1.16 1.16 1.27 1.17 1.19 1.33 1.22 1.23

� 0.03 0.20 0.17 0.14 0.26 0.28 0.11 0.26 0.25 0.05 0.20 0.22

nRMSE 0.31 0.29 0.32 0.08 0.10 0.10 0.08 0.10 0.10 0.07 0.09 0.10

(MR = moving averaged WSN vs. raw SunScan estimates, ML = moving averaged WSN vs. linear

approximated SunScan estimates, PP = polynomial approximated WSN vs. SunScan estimates

r2: coefficient of determination, N :sample size, ↵: slope , �: intercept)

efficient (Fig. 13(a)). At the same time, the overall data set is further reduced

by even more samples using the filter operations than by the prior preprocess-602

ing (cf. Fig. 13(b)).

In addition, Figure 14 highlights two correlation properties of the proposed604

filtering. First, concerning the accuracy of our approach represented by the

nRMSE, a clear trend can be observed (Fig. 14(a)). The higher the improvement606

of the correlation achieved by successive filtering, the higher is also the accuracy.

Second, the linear regressions of all individual correlation pairs with different608

approximations result in a very low interception (Fig. 14(b)). Thus, in order to

neglect this additive correlation parameter and to focus on the slope, the linear610

regressions are forced to the origin (↵0). The results are also integrated into

the figure (unfilled markers) and are accumulated around a slope of 1.324 as612

emphasized by the ↵0 boxplot.

8. Discussion & Comparison to Related Work614

8.1. LAI Calibration

For a consistent LAI estimation using our radiation-based approach and the616

formula in Equation 1 (Sec. 2.3), a reliable calibration factor ! is required. This

factor is plant- and site-specific and is related to the so-called extinction coef-618

ficient. With regard to our approach, this calibration factor has already been

successfully determined for maize (cf. Bauer et al., 2016). So far, a preliminarily620
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(a) Evolution of correlation. (b) Data reduction due to filtering. The references

for the respective percentage values are the theoretical

maximum number of samples, cf. success rate in Fig.4.

Figure 13: Impact of filtering on the quality of ground truth correlation.

assignment of !initial = 1.24 was used. Taking the fully-processed and filtered

LAI estimates and different approximation setups into account, a reasonable622

assignment for wheat cultivars can now be determined. We found that in all

approximation setups and across all filter steps in Table 3, ↵ is relatively con-624

stant. The statistics of the corresponding boxplot in Fig 14(b) gives the factor

↵0 = 1.324. This value results in !wheat = ↵0 !initial ⇡ 1.324 · 1.24 ⇡ 1.64.626

Using this calibration factor, LAI estimates can be finally adjusted and

meaningful LAI trajectories can be derived. Figure 15 compares WSN-derived628

LAI time series (moving average) with series from manually gathered SunScan

estimates as ground truth. Here, each subfigure corresponds to the according630

approximation pair considered in Section 7. Independent of the particular ap-

proximation setup, the comparison reveals that our approach can greatly fit the632

dynamic wheat growth process. Moreover, change tendencies induced by inten-

tional drought stress in the ROS plots and even cultivar-specific differences are634
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(a) Increasing the correlation also implies

nRMSE reduction. Solid markers represent

results from all wheat plots, unfilled markers

according information but excluding WSN

outliers (sensor 0x8 or CON cultivar 2).

(b) Slope and intercept of different approxi-

mation setups extended by a boxplot summa-

rizing all slopes that were forced through the

origin (indicated by unfilled markers).

Figure 14: Correlation properties of processed and filtered LAI series.

captured by the WSN.

In accordance to the findings of Qu et al. (2014a), the multi-day aggregation636

using the MOVAVG approach enables the most reasonable results. Regard-

ing this approach, we found that the very high correlation with raw SunScan638

estimates (r2 = 0.91, Fig. 15(a)) still remains on a level that is usable in prac-

tice (r2 = 0.85, Fig. 15(b)) when the sample size N for the correlation is artifi-640

cially increased by the linear interpolation of SunScan estimates. However, we

should note that, despite of the wide scientific use and acceptance, the accuracy642

of commercial LAI instruments and plant canopy analyzers under certain condi-

tions are discussed controversially in literature (e.g., Wilhelm et al., 2000; Bréda,644

2003; Jonckheere et al., 2004; Garrigues et al., 2008). Thus, using ground truth

LAI values assessed by the SunScan device introduces a certain error to our646

comparative analysis. Hence, an absolute scientific evaluation on the accuracy

of our approach is hardly possible.648
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(a) WSN-MOVAVG vs. SunScan-RAW.

(b) WSN-MOVAVG vs. SunScan-LIN.

(c) WSN-POLY vs. SunScan-POLY.

Figure 15: Final post-processed and filtered WSN LAI trajectories in comparison with

SunScan ground truth using different approximation setups.

8.2. Limitations of Our Approach

The simplified model of Monsi-Seaki (Monsi and Saeki, 1953) used to derive650

LAI information in our approach, abstracts from certain factors that influence

this derivation and, thus, has its limitations. In our approach, this abstraction652
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is addressed using the correction factor ! and the daily averaging of LAI es-

timates that both result in promising LAI trajectories and a high agreement654

to the SunScan reference. Nevertheless, we observed a daily pattern of LAI

time series on sunny days (cf. Fig. 9(a) in Sec. 5.2). This pattern is well-known656

and primarily caused by the SZA ✓s since the incident angle of sunrays has a

direct impact on the path length S(✓s) that sunrays travel through the canopy658

to the ground. Assuming that the canopy is horizontally large enough, S(✓s)

can be expressed as S(✓s) = cos(✓s)�1. Taking this into account, the simplified660

LAI calculation of Equation 1 can be extended by this trigonometric function

resulting in a product that is referred to as contact number  (Lang and Yueqin,662

1986). Moreover, the SZA is not the only factor that influences LAI estimation.

Hence, Equation 1 can be further extended by the species-specific G-function664

G(✓L, ✓s) that also takes the MLA ✓L into account (cf. Weiss et al., 2004). This

is generally expressed as:666

LAI =
(✓s)

G(✓L, ✓s)
= �cos(✓s) ln

✓
B

A

◆
G(✓L, ✓s)

�1. (2)

Unfortunately, the G-function is usually unknown which makes it difficult to668

estimate an absolute LAI. However, under the assumption of spherical distribu-

tion of canopy leave angles, it has been analytically shown that for a particular670

zenith angle ✓s = 57.5°, this function is independent of ✓L and constant with

approx. 0.5 (Wilsoni, 1963), resulting in:672

LAI = �2 cos(57.5) ln

✓
B

A

◆
. (3)

8.3. Comparison

As already mentioned in Section 2.2, there is only a limited amount of di-674

rectly related work regarding WSN-based LAI assessment. Li et al. (2015)

propose a novel sensor type that uses DHP for indirect LAI assessment. How-676

ever, their sensor device is much more complex and less cost-effective, thus, not

suitable for large-scale deployments. Only a few comparable real-world deploy-678

ments in agricultural context exist, most notably LAINet (Qu et al., 2014b,a)
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and the monitoring system proposed by Shimojo et al. (2013). Generally, our680

experiences with real-word deployment is consistent to practical challenges re-

ported in the literature. The numerical quality (represented by r2 and nRMSE)682

of our results can clearly compete with related WSN approaches and also with

more complex techniques that use more powerful devices such as DHP (Ryu684

et al., 2012), for instance. Both approaches mentioned above also produce LAI

trajectories but with lower temporal resolution and differ from our approach686

in terms of the sensing device and/or in terms of application. Furthermore,

both approaches do not take a bundle of multiple consecutive PAR readings688

as appropriate filter into account. Shimojo et al. (2013) use a similar device

and a single-angle algorithm for greenhouse monitoring but without an optical690

bandpass filter. In contrast, Qu et al. (2014a) developed a more complex device

consisting of multiple sensors. Following a multi-sensor and -angle algorithm,692

their approach is used for forest LAI estimation and also to collect ground LAI

of maize for the validation of remote sensing products (Qu et al., 2014b).694

For a comparison to related approaches, we also implemented the single-

angle LAI estimation according to Equation 3, referred to as LAI-575 and also696

the sensing strategy introduced by Shimojo et al. (2013). In order to cope with

the weather impact, the authors propose an algorithm for a proper measure-698

ment timing decision based on empirical knowledge. On sunny days, PAR

measurements should be taken just before direct sunlight reaches the over-700

foliage (e.g., 07:00) whereas on overcasted days periods should be used for the

measurements when the light intensity remains on a constant level (e.g., 09:00).702

We implemented Shimojo’s approach and, using the DWD weather information,

we adapted the proposed timing to our time zone and region.704

However, the fixed measurement timing was found to be inappropriate for

our long-term deployment. We consequently adapted the timing to seasonal706

variations of the sun path. By this means, a significant performance increase

could be achieved that is however still outperformed by our approach (denoted708

as LAI-wheat) as visualized by Figure 16. A possible reason for this mismatch

are the different sensor devices and that, due the application area in green-710
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house monitoring, Shimojo’s approach neglects wind effects that are addressed

by our approach. Furthermore, the amount of cloudy days is much lower in our712

deployment because of different season and region which might make this ap-

proach not feasible for a fine-grained wheat LAI assessment. Moreover, Figure 16714

shows that our approach also outperforms the single-angle approach LAI-575

that qualitatively comes closer to our approach. The single-angle algorithm has716

the advantage of maximal energy efficiency because it requires to measure the

transmittance solely in one particular SZA. But at the same time, it is generally718

more impacted by weather factors.

(a) LAI-Shimojo. (b) LAI-575. (c) LAI-wheat.

Figure 16: Comparison with related LAI assessment approaches in WSNs, exemplarily shown

for the particular approximation setup WSN-MOVAVG vs. SunScan-LIN.

8.4. WSN-related Issues720

The LAI-specific STDPAR filter proposed in Section 6.2, could be applied in

a future WSN for an early detection of noisy and unusable PAR bundles directly722

on the sensing devices. Hence, it could assist the in-situ rating of a specific

sample and the decision of forwarding or discarding. That would significantly724

reduce communication cost and, thus, contribute to energy-efficiency which is

one of the fundamental challenges for WSNs.726

In the presented deployment, the sampling strategy is an intended oversam-

pling and the question of an adequate LAI sampling interval that achieves a728

reasonable energy-accuracy tradeoff is still an open issue and will be part of our

future work. Nevertheless, the total data size collected using the oversampling730
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strategy is less than 5 MB/sensor during the entire deployment. Thus, the pro-

duced data is absolutely manageable. Regarding forwarding to the backbone732

network (e.g., Internet), the resulting daily reports (750 kB/day) could be fur-

ther reduced by the proposed in-situ filtering as well as by existing aggregation734

and compression algorithms.

9. Conclusion736

In this paper, we used our radiation-based LAI sensor prototypes in a long-

term WSN deployment for a continuous monitoring of crop LAI. We demon-738

strated the general feasibility and the great potential of our system. A cultivar-

and site-specific correction factor was successfully determined for winter wheat740

and we showed that our approach enables temporal fine-grained LAI trajecto-

ries. These trajectories are found to yield a high accuracy and, thus, to fit the742

dynamic growth process of crops. Moreover, cultivar-specific differences and

change tendencies in this process can be reliably detected with our system as744

shown by experimental results in the rain-out shelter environment with inten-

tionally induced drought stress.746

For a purposeful processing of WSN data, we applied standard filtering mech-

anism and multi-day averaging, but also introduced a novel filter for outdoor748

environments that is able to eliminate noise induced by small-scale dynamics

in the plant stock. Furthermore, a comparison to related approaches showed750

that for high-quality LAI profiles, it is worth considering multiple incident an-

gles across each day in the process of LAI assessment. However, a reasonable752

quantity and specification of important angles for our approach is still missing.

Therefore, a comprehensive evaluation of adequate sensing strategies is planned754

in our future work. We will use the data from this deployment to further inves-

tigate different sensing strategies and the trade-off between the sampling rate756

and energy consumption in order to significantly reduce the required sampling

rate. By doing so, our goal is to answer two important questions: How often do758

sensors have to sample the PAR and when is the most efficient time to do that?
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