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Abstract

A precise and up-to-date situational awareness of crop conditions is important
for site-specific agricultural management and precision farming, in general. The
continuous monitoring of relevant crop parameters has recently been shown
to have a great potential and to assist in a large number of applications. In
this context, the leaf area index (LAI) is a key parameter that is also used
in many other domains beyond precision farming. Its acquisition and assess-
ment are critical for the understanding of many aspects of crop development,
the dynamic growth process, and also growth anomalies. However, a contin-
uous monitoring using traditional LAI assessment methods is hardly possible
and very expensive. For this reason, low-cost sensors based on Wireless Sensor
Network (WSN) technology have been developed and interconnected to agri-
cultural in-situ sensor networks that are promising to estimate LAI with high
spatio-temporal resolution.

In this paper, we report on our experience of deploying a long-term crop

monitoring sensor network in field plots with different wheat cultivars ( Triticum
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aestivum L.) and water regimes. By a comparative analysis with a commercial
LAT instrument, we show that our low-cost radiation-based WSN approach is
applicable to wheat and, moreover, is able to differentiate between individual
wheat cultivars as well as to detect drought stress. In addition, we present LAI
developments over time resulting from continuous estimates for each individual
wheat plot, monitored by the sensor network during the relevant time span of
the wheat growth period. At the same time, we demonstrate the demand for an
adequate filtering and processing of distributed sensor information. Therefore,
the non-negligible environmental impact is analyzed and generic filter methods
for radiation-based LAI assessment approaches are introduced. Applying these
filters, a high correlation with traditional LAI methods is achieved and credible
trajectories of LAI development with high temporal resolution are produced.
These trajectories appropriately fit the dynamic crop growth process and allow
a site- and cultivar-specific differentiation. Thus, the proposed WSN-based LAI
monitoring system enables new applications and opportunities. It can greatly
support modern crop management and breeding.

Keywords: Wireless Sensor Network, Precision Agriculture, Long-term

Deployment, Leaf Area Index, Crop Parameter Monitoring.

1. Introduction

The leaf area index (LAI) is one of the most important bio-physical plant
parameters. It is a key enabler for many applications in various disciplines
such as ecology, meteorology, climatology and contributes to the understand-
ing of biosphere-atmosphere interactions. For flat-leaved vegetation, LAI is
commonly defined as the dimensionless ratio of total on-sided foliage area to
ground surface area (Jonckheere et al., 2004). Since LAI is an indicator for
physiological and structural functions of canopies and an integrative measure
for the photosynthetic performance of plants, it is an appropriate parameter of
crop growth during the complete phenological cycle. In the context of preci-

sion agriculture, LATI assessment can be useful for the early detection of growth
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tendencies and anomalies. Hence, LAI provides essential information for yield
models and, therefore, also serves as an indicator for yield-reducing processes
caused by diseases or mismanagement (Carter, 1994).

An earlier and more precise site-specific knowledge of individual dynamic
growth processes in agricultural fields will produce valuable insights for farmers.
As aresult, this knowledge will positively influence modern agricultural practices
and also improve the prediction of yield rates. Thus, it is crucial to increase farm
output and at the same time to reduce waste and to ensure sustainability, in par-
ticular in the domain of irrigated agriculture which will become more and more
important due to the emerging effects of the climate change. For the realization
of such a timely situational awareness with a high spatio-temporal resolution,
there is a steadily increasing demand for in-situ environmental monitoring by
advanced Wireless Sensor Network (WSN) and Internet of Things (IoT) tech-
nology. Aside from soil and moisture properties, the exploration of bio-physical
and bio-chemical crop parameters like fractional cover, biomass, fraction of ab-
sorbed photosynthetically active radiation (fPAR), and first and foremost LAI
with high-quality, long-term consistent LAI products are of special interest in
the context of precision agriculture.

WSNs are composed of a large number of small, cheap, resource- and power-
constraint devices that are, depending on their sensing task, equipped with one
or multiple sensors (Akyildiz et al., 2002). These devices are wirelessly inter-
connected, typically in a self-organizing manner, within a local network and re-
sponsible for data transmission and often data forwarding to a central IoT base
station, possibly connected to the Internet. The main purpose of each individual
device in such a network is the environmental sensing of physically measurable
phenomenas, e.g., temperature, relative humidity, or soil moisture. Precisely be-
cause of the low-cost and low-power characteristics of individual devices, they
are suitable for large-scale and long-term deployments. The downside of this
resource-constraint is that these typically battery-driven devices have limited
sensing accuracy only. However, this limitation is compensated by the large

number of collaborating devices, which are able to continuously provide sensor
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information at high temporal as well as spatial resolution. Hence, WSNs are
particularly tailored for ground-based monitoring of crop parameters as has been
realized by research since more than one decade now. A promising progress has
already been made for WSN-based LAI assessment and the potential to reduce
time and labor costs of conventional in-situ acquisition has been shown (e.g.,
Yuan et al., 2009; Shimojo et al., 2013; Qu et al., 2014a; Bauer et al., 2016).
Moreover, WSNs beneficially assist the validation and improvement of pheno-
logical models and parameter maps or other products derived by remote sensing.
Using satellite or aerial imagery collected by drones, LAI information gathered
by in-situ WSNs can be extrapolated and scaled-up to large areas (e.g., Qu
et al., 2014b). However, particularly regarding the crop LAI, current accuracy,
consistency, and temporal resolution may not meet the requirements from the
application viewpoint of agricultural end-users.

In this paper, we continue our previous work (Bauer et al., 2016) that pro-
poses a low-cost LAI sensor prototype and realize a long-term LAI monitoring

system. The core contributions are:

e A method for processing and filtering WSN data is introduced that is nec-
essary to obtain feasible high-resolution LAI time series. We present this
along with experimental results achieved by our system and a comparative

analysis with a commercial LAI device.

e The following research question is answered: Can yield-limiting tendencies
as well as cultivar-specific differences of crop growth processes reliably be

described by WSN-based LAI monitoring systems?

2. Background

2.1. A Brief Review on Conventional LAI Assessment

Direct methods to assess LAI provide the most reliable and precise results.
A common approach is to destructively assess this index by manually collect-

ing all leaves in a reference plot and measuring their individual areas directly
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using planimeters. But also allometric approaches exist, avoiding the harvest-
ing of plants. Nevertheless, direct methods are extensively time- and labor-
consuming, and, thus, costly and limited to small areas (Bréda, 2003; Jonck-
heere et al., 2004). Therefore, various indirect and non-destructive methods
have been developed that derive LAI indirectly by measuring a certain related
quantity, usually the transmittance of solar radiation through the canopy. Ex-
isting indirect methods differ in many aspects and can be grouped into in-situ
and remote sensing approaches. Traditional in-situ methods use specific in-
struments with passive optical sensors that are commercially available, most
notably AccuPAR (Decagon Devices), LAI-2200 (LI-COR Bioscience), and Sun-
Scan (Delta-T Devices). These instruments allow a manual estimation of LAI in
the area of interest (Jonckheere et al., 2004; Weiss et al., 2004; Bréda, 2003), but
corresponding measurements are conducted in a point-by-point manner bear-
ing the risk of being influenced by changing weather conditions. In the re-
cent years, the traditional ground-based assessment is complemented by digital
hemispherical photography (DHP) approaches that use upward-pointing digital
cameras (e.g., Ryu et al., 2012) to derive LAI from digital imagery.
Complementary to in-situ methods, LAI derived from remote sensing multi-
and hyperspectral imagery enabled by satellites or recently by drones, represents
an established indirect alternative. However, for model calibration, validation,
and training of remote sensing products, in-situ measurements are still necessary
and conducted in practice (cf. e.g., Boegh et al., 2002; Qu et al., 2014b). Overall,
common shortcomings of all conventional methods, in-situ and remote, are high
costs, either in terms of labor costs of manual measurements or monetary costs
for high-resolution satellite imagery. Moreover, manual measurements or drone
campaigns are usually conducted sparsely. On the other hand, satellite imagery
is prone to adverse weather conditions. Hence, conventional LAI assessment
has a relatively low temporal and/or spatial resolution that might not meet the
requirements of possible applications in field-phenotyping and precision agricul-

ture.
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2.2. WSN-based LAI Monitoring

Technological advancements highly reduced the physical size and costs of
sensors enabling them to be used in large-scale wireless networks for many ap-
plications in a variety of domains. Using environmental sensors, WSNs gradually
complement existing monitoring systems in the context of precision agriculture
with ground-based information to increase productivity and sustainability. Pos-
sible applications range from site-specific irrigation, fertilization, and crop treat-
ment, to horticulture and animal monitoring (Rehman et al., 2014). Nowadays,
they are often integrated into farm management information system (FMIS)
and IoT platforms, such as FarmBeats (Vasisht et al., 2017), for instance.

Pioneer research of non-destructive WSN-based LAI assessment is shared by
Yuan et al. (2009), proposing an iterative scheme to deploy sensors into farmland
and a processing of sensory data taking vary light reflections and refractions into
account. Shimojo et al. (2013) introduce a continuous LAI monitoring system
and demonstrate the feasibility of commercial off-the-shelf (COTS) sensors for
LAI estimation in a tomato greenhouse. Another progressive system, LAINet,
based on a specific multi-point optical sensor system is presented by Qu et al.
(2014a) who also show preliminary research on the validation of remote sensing
products using WSNs (Qu et al., 2014b). As recent work (Qu et al., 2014a) and
also the absence of mentioning in current reviews (Rehman et al., 2014) reveal,
WSN-based LAI assessment is still in an emerging stage. However, its potential
and opportunity to enable multi-point monitoring systems and at the same time
to overcome the shortcomings of traditional point-by-point measurements have

been repeatedly shown.

2.8. LAI Estimation

In our previous work (Bauer et al., 2016), we presented a novel low-cost sen-
sor for a radiation-based LAT assessment and show the feasibility of the sensing
system and promising results in maize (Zea mays L.) cultivars. The devel-

oped prototype enhances a COTS photosynthetically active radiation (PAR)



sensor platform with a diffuser and special optical filter. Following a simplis-
tic approach, the sensor is not assumed to deliver more accurate results than
commercial instruments. However, due to the potentially large number of repli-
cated measurements and distributed sensors, a continuous monitoring with fine-
grained temporal resolution during the entire crop growing cycle is enabled.
Similar to the approach of Shimojo et al. (2013), we use the Monsi-Seaki
model (Monsi and Saeki, 1953). This simplified model is based on the inversion
of the Beer-Lambert law and, under certain assumptions (cf. Weiss et al., 2004)),
derives LAT estimates from the transmittance T' of solar radiation through the

canopy. The relation can be formulated as:

LAI = —w In(T) = —w In <§> , (1)

where T is obtained be the ratio of perceived radiation below (B) and above (A)
the canopy. Thus, basically two measurements and sensors, respectively, are
necessary to estimate LAI. However, the indirect assessment is very complex
in practice and there are many other parameters that influences this estimation
such as the solar zenith angle (SZA) and weather factors, for instance. Accord-
ingly, a correction factor w is used to rectify the reverse exponential relation
between LAI and transmittance. This factor is cultivar- and site-specific and,
among others, mainly affected by the SZA and the canopy structure, partic-
ularly leaf distribution, mean leaf angle (MLA), and clumping. In general, w
is unknown but can be determined empirically, as already done for maize and
our prototype (Bauer et al., 2016). However, for winter wheat, w is not yet
identified. Thus, it is initial assigned with w;nitiq1 = 1.24 here, which is inspired
by a parameter set of the LAI-2200 (cf. Bauer et al., 2016) and later adjusted
using a comparative analysis with the SunScan instrument introduced in the
following section.

Another noteworthy aspect is that neither the developed sensor prototype
nor the SunScan instrument is able to measure the actual true LAI due to the
presence of non-photosynthetic canopy elements such as branches and stems that

cannot be distinguished adequately. Thus, several alternative terms have been
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proposed to describe the estimates obtained by those and similar approaches,
most notably the terms plant area index (PAI) and effective LAI (cf. Jonck-
heere et al., 2004). However, in this paper, we still use the term LAI for con-
sistency, but distinguish between the so-called green LAI (GLAI). It refers to
the sampling strategy in which yellow leaves in progressing phenological stages
are intentionally excluded from PAR measurements in order to focus on the

photosynthetically active leaf area.

2.4. Reference Instrument and Ground Truth Data

Ground truth LAI estimates are assessed by regularly measurements using
the SS1SunScan, a widely-used canopy analyzer that is optimized for agricul-
tural crops with low regular canopies. The instrument is also radiation-based
and has a 1 m probe with an array of 64 PAR sensors to measure the transmit-
tance. The additional radio-linked BF3 Sunshine Sensor is used for simultaneous
reference sampling. LAI measurements were conducted on nine selected days
during the wheat growth period, each around noon under stable weather condi-
tions (sunny and unclouded) according to the GLAI sampling strategy, i.e. by
holding the probe just below the green leaf layer.

3. WSN Architecture & Deployment

3.1. Deployment Site

The deployment site is located at Braunschweig, Germany, on experimen-
tal fields of the Julius Kiithn-Institute (JKI) (52.296°N, 10.436° E; 75m eleva-
tion). During the 2016 growing season, the maximum impact of water short-
age and drouth stress on wheat phenology, physiology, and yield was investi-
gated. Therefore, different wheat cultivars were grown: (1) in a mobile rain-out
shelter (dry environment; referred to as ROS) and (2) in a nearby irrigated
control (wet environment; referred to as CON). The ROS is a foil covered
shelter (cf. Fig. 1(a)) that automatically moves over the experimental plots dur-
ing rainfall periods via a rail system. For further details of the ROS site re-

fer to Schittenhelm et al. (2014). The main WSN deployment was operating
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Figure 1: Sensing regions at different locations.

for 74days in 2016 (day of year (DOY) 105-178). Two particular high yield-
ing wheat cultivars were observed, each in the ROS (Fig.1(a)) and the CON
field (Fig. 1(b)). The first one is Hystar (referred to as cultivar 1), an early ma-
turing hybrid wheat, and the second one is Gordian (referred to as cultivar 2),

a cultivar with medium maturity.

3.2. Real-World Challenges

The main reasons of challenges for outdoor deployments in the agricultural
domain can be grouped into two categories: (1) environmental and (2) wildlife
induced challenges. Our key approach in order to cope with both types of
challenges is remote monitoring of all components and redundancy (cf. Bauer
and Aschenbruck, 2018). For the radiation-based LAI assessment, two essential
measurement positions are required: a ground sensor below the canopy and a
corresponding above reference sensor (Fig.1(c)). For redundancy, three above
references are used and, in each cultivar, two ground sensors are deployed. More-
over, wireless (IEEE802.15.4) and wired (USB) connections are used in order
to increase redundancy of data delivery. While there is a power source avail-
able at the ROS, solar power solutions had to be used for the CON area and

the above reference sensor stand. Unfortunately, the installed solar panel and
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Figure 2: Impressions of a certain impact of harsh outdoor environments on WSN equipment.

batteries were not fully reliable and led to temporary disruptions of the deploy-
ment. Furthermore, it turns out, that sensor cases were not completely sealed
and water-resistant. As a consequence, condensation water occurs under the dif-
fuser cap of some sensors, cf. Fig. 2. Suchlike challenges could easily be mitigated
by industrial outdoor cases, enhanced solar power equipment, and professional
uninterruptible power supply systems. However, it is hardly possible to tackle
all challenges which potentially could arise in real-world deployments. In prac-
tice, a non-disruptive WSN operation could not be guaranteed and erroneous
sensors could never be totally prevented. Thus, we believe that sensor redun-
dancy is the most reasonable approach to cope with adverse and unpredictable
situations. Hence, it is crucial to realize a low-cost sensing platform as proposed

with our COTS prototype.

3.3. Architecture

According to the concept described by Bauer and Aschenbruck (2018), clus-
ters of four sensor devices that are attached to a Raspberry Pi via USB are
used for individual wheat plots. These clusters are connected to a central base
station using IEEE 802.15.4 and for redundancy purposes also interconnected in

a WLAN. The concrete setup is sketched in Figure 3 and a key data overview of

10
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Location 1: Rain-out Shelter (ROS) Base Station Above Stand
Cultivar 1
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Location 2: Irrigated Control (CON)

RPi 3

L

Figure 3: Communication architecture of the deployment. Three self-sufficient sensing clusters
are connected via WLAN links with a central gateway node providing UMTS-based Internet

connectivity and FMIS integration.

the deployment is given in Table 1. Using public land mobile networks (PLMN)
connectivity (i.e. UMTS cellular network), the base station acts as Internet gate-
way. It is responsible for sensor data upload and also for remote access to the
WSN. The overall architectural concept consists not only of the WSN itself,
but also of a server that offers web-based monitoring, a database system, and
allows remote reconfiguration and reprogramming. It is noteworthy, that the
goal of our deployment is neither to realize a complete and mature productive
system, nor a sophisticated and efficient WSN. Instead, a functional sensing
system that demonstrates the feasibility of providing a continuous LAI moni-
toring is developed. Furthermore, by intentionally oversampling PAR, our aim
is to gather an extensive data set in order to analyze factors influencing LAI

estimation.

3.4. Hard- and Software

The low-cost IEEE 802.15.4/ZigBee compliant sensor prototype introduced
in our preliminary work (Bauer et al., 2016), i.e. a TelosB-based platform (8 MHz
TI MSP430 MCU, 10kB RAM) is used as basic sensor. Amongst other onboard-
sensors, the COTS platform features an appropriate PAR sensor, S1087-1, man-

11
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Table 1: Deployment overview.

Date 2016,/04/14-2016/06/26 (DOY 105-178)

Duration 74 days

# locations 2 (ROS and CON)

# cultivars 2 (Hystar and Gordian)

# sensors 11 ( 8 ground + 3 reference sensors, 2 sensors/plot)
Sampling rate 30 samples/hour

Sampling phase 21 hours/day (03:00—00:00)

Night phase 3 hours/day (00:00-03:00)

Max. # samples/sensor  Per day: 630 (68 kB), overall: 46620 (~5MB)
Overall data volume 77.3MB (incl. additional error logs)

ufactured by Hamamatsu. For a proper LAI assessment, the sensor was en-
hanced by two essential components: (1) a diffuser cap improving the stability
of PAR readings and (2) a blue band-pass filter to select the blue spectrum
of visible light and, thus, increase the contrast between green vegetation and
sky. Details concerning this setup can be found in (Bauer et al., 2016). The
raw sensor readings can be converted into the unit lux according to a formula
provided by the manufacturer. However, due to the sensor modification, a re-
calibration would be necessary. Because such a conversion is not required for
the measurement of the transmittance, it is left out here. For convenience, we
still use the term PAR readings for unconverted and also filtered digital raw
readings obtained by the sensor.

Similar to Mo et al. (2009) and Qu et al. (2014a) and prior to the deployment,
a relative calibration was conducted in a controlled laboratory environment by
mutual determination of correlation coefficients assuming a linear relation of
the solar radiation response between all sensors. Therefore, sensor 0x1 was ar-
bitrarily selected as reference sensor. This calibration is particularly important
because of the possible production deviations of sensor cases and modifications.

The basic acquisition software is also adapted from the sensing application
introduced in Bauer et al. (2016). In the modified version, the sensor node uses
a constant sampling rate of 30 samples/h. Amongst others, each sample consists

of multiple PAR sensor readings that are taken in a short burst of 25 readings

12
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with a spacing of 50ms. This is done in order to get more reliable averages and
also to observe small-scale fluctuations. To differentiate between a single PAR
samples in such a PAR bundle, the former is hereinafter referred to as PAR
reading. The term PAR sample is used for the arithmetic mean of a bundle.
As a reliable operation of various components during the entire deployment
is explicitly not expected, certain safety mechanism have been implemented.

Details can be found in Bauer and Aschenbruck (2018).

3.5. Sensor Data Set

A holistic overview of the entire PAR data collected in the WSN deploy-
ment is shown in Figure 4, visualizing data streams of all sensors involved. Each
stream has a daily pattern that follows the daily course of the sun, i.e. the
increasing solar irradiation in the first half of the day and decreasing irradiation
in the second half, both naturally weakened by atmosphere and sky conditions.
Due to the unforeseen power supply challenges, the WSN part in the CON
plots (cf. Fig. 3), started its operation with a certain delay, at DOY 125 (upper
x-axis), still timely to monitor relevant vegetative changes. The overview in Fig-
ure 4 provides a first impression of the quantity of data, but also of the data gaps
due to the harsh environment and technical problems. It turns out, that the re-
dundancy in our design was actually necessary in many situations. Moreover, it
can be seen by the irregular and fragmentary data streams of ROS sensors (green
shaded) that there were software issues in the beginning phase of the deploy-
ment (DOY 105—-119) that could be successfully fixed. However, irregularities
of CON sensors (blue shaded) are often caused by the under-dimensioned solar
power equipment. In fact, the prototypical deployment clearly leaves room for
improvement, but still approx. 40 to 80 % of theoretically possible samples were
successfully delivered to our database, as noted in Figure4. Thus, an extensive

data set is available.
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4. Methodology

For the evaluation of the experimental WSN-derived LAI estimates, a com-
parative analysis to estimates manually measured with the SunScan instrument
briefly introduced in Section2.4 is conducted. These measurements are seen
as (substituted) ground truth for the validation, cf. Sec. 2. Assuming a linear cor-
relation between both set of estimates, we use the Pearson product-moment cor-
relation and a linear regression to compute the correlation coefficients. Hence,
the key metric to evaluate the quality of our results is the coefficient of determi-
nation r2 representing the level of agreement with the SunScan values. But also
other numerical parameters are considered as the slope a and the interception
B of the regression line, as well as the normalized RMSE (nRMSE) defined as
nRMSE = RMSE/(max(LAIwsn) — min(LAIwsn)).

The WSN deployment produced a large amount of data during the relevant
part of the growing season of wheat cultivars observed in this paper. Each in-
dividual sensor provides data streams containing various information. For LAI
assessment, the only relevant information is the PAR bundle of each sample.
Hence, the data processing is limited to these bundles and the data analysis to
LAI information, respectively. The entire data processing and analysis can be
clustered into six major phases as illustrated in Figure5. The most challeng-
ing part is an appropriate processing chain from raw sensor samples to usable
LAI estimates. First, raw samples need to be adequately preprocessed and fil-
tered. Then, preliminary LAI values can be estimated that subsequently need
to be post-processed before they can be reasonably compared to ground truth
data in the closing comparative analysis. LAI estimates are derived according
to the simplified method in Equation 1 (Sec.2.3) using a multi-angle approach.
That means, PAR measurements are conducted over the entire day with dif-
ferent solar incident angles and daily averages involving the entire SZA range
are computed. Apart from evaluating the quality of WSN-based LAI estimates
by the comparative analysis and the impact of data processing and filtering, a

secondary goal is to specify a proper correction factor. Based on the o param-
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eter achieved by the sufficient correlation, the initial assignment of w could be
calibrated, provided that the WSN data is processed adequately.

In order to link LAI data with weather information, we benefit from the close
proximity (approx. 1km) of the JKI site to the Agrometeorological Research
Centre of the Deutscher Wetterdienst (DWD). We use the weather observation
data of this official weather station (ID 662)! which is freely available in hourly
resolution. The SZA is calculated based on the longitude, latitude, and local

sampling time.

5. Data Processing

5.1. Preprocessing of WSN raw data

The first step of the preprocessing phase is the calibration of individual
sensor data using the calibration factors, determined a priori as mentioned in
Section 3.4. Nevertheless, due to the real-world nature of gathered sensor read-
ings, (calibrated) raw data could be very noisy. On the one hand, reasons could
be small-scale environmental noise (in < seconds range) as induced by mea-
surement inaccuracies of individual sensors or by fluctuations below the canopy

caused by wind. This challenge is mitigated by averaging multiple consecutive

Lftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly
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PAR readings of each bundle in each measurement sample (cf. Sec. 3.4). Using
this average, a simple minimum threshold (PARTHRESH) is applied that elimi-
nates readings in the very low illuminance intensity range. This is because these
readings are likely to not provide reliable information because intensity is too
low for the ADC resolution as already noticed by Shimojo et al. (2013). We use a
minimum of 35 (raw unit) here. On the other hand, there is large-scale noise (in
minutes to days range) unavoidably induced by unstable weather conditions as
also indicated by existing research (Qu et al., 2014a) or even by single leaves
adversely covering sensor caps for a certain period of time, for instance. This
kind of noise requires a processing of adjacent samples. For that purpose, we
decided to apply a median filter for data smoothing and determined a window
size of 11 (i.e.five adjacent samples and in an overall period of £10min) to be
reasonable to smooth consecutive (averaged) PAR samples.

The reason of deploying sensor pairs in every wheat plot and using three
above reference sensors, respectively, is basically redundancy for failure safety.
However, if readings from different sensors are appropriately merged, pairwise
sensor readings can also enable noise mitigation and, thus, improve data qual-
ity. To merge sensor pairs, we use the smoothed data and differentiate between
below and above sensors. For the above sensor triple, we use the mazimum
function for merging because these sensors are intended to measure the maxi-
mum illuminance intensity of the unobscured sky. Hence, if a single reference
sensor is affected for any reason, it has no negative impact on the merged data.
Thus, the maximum function ensures that the merged data is not impaired as
long as at least one of the above sensors provides reasonable readings. This
feature is very crucial since unstable cloudiness or obstacles in the surrounding
area can result in situations where some sensors were more shaded than others.
Moreover, in our scenario, we occasionally observed birds of prey sitting on the
sensor stand (cf. Fig. 2(b)) and heavily obscuring above sensors.

Figure 6 visualizes the very strong linear correlation of individual sensor
readings of above reference sensors that are calibrated but not yet smoothed

as a scatter plot. Only a slight deviation between readings from sensor 0xA
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Figure 6: Pairwise correlations of calibrated PAR samples from above reference sensors.

and 0xB, that both are located on the stand very close to each other, can be
observed (Fig. 6(a)) and only a very few outliers exist, probably induced by birds
sitting on the stand. This additionally confirms that the sensor a priori relative
calibration is effective. Moreover, the PAR data set is divided into data from the
first half (gray) and from the second half of the deployment (blue). Regarding
the condensation water under the diffuser cap of sensor 0xB (cf. Fig.2(b)) that
arose during the first half, it turns out that the adverse impact of condensation
water is very limited. Indeed, the corresponding readings of the affected sensor
turned out to be only a little attenuated as the data of the first half (blue) reside
mainly slightly above the regression line (red). After detecting the condensation
water problem at DOY 125, we re-sealed the sensor leading to the very high
correlation in the second half of the deployment.

In contrast to the strong similarity of sensor OxA and 0xB, the correlation
of sensor0x9 and OxA (Fig.6(b)), and 0x9 and 0xB vise versa, shows more
anomalies. Here, the impact of sensor 0x9’s proximity to the ROS with its
shading or reflections can be observed by the distributed outliers below the
regression line. Additionally, the impact of trees in the vicinity of the 0xA-0xB
sensor stand that result in occasional shading of both sensors, most notably at

higher SZAs, can be seen by the structured outliers above the regression line,
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and, hence, leading to an overall asymmetrical outlier pattern in this figure. In
general, there is a high consistency across all above sensors and the mazimum
function for merging appears to be an appropriate choice.

With regard to the merging of below sensor pairs, the maximum function
is not reasonable since it would intensify the impact of outliers. The same
would apply in case of the minimum function. We found the arithmetic mean
of (roughly) simultaneously measured readings to be an appropriate function for
merging that kind of sensor information. Although a strong linear correlation
can be observed again, there is an apparent difference between below readings
of individual sensors at the same location and in the same cultivar induced by
small- and large-scale noise and crop heterogeneity. This difference is exemplar-
ily shown for both sensors deployed in cultivar 1 in the ROS by a scatter plot
in Figure 7(a). Even though there are extreme outliers in sensor readings, these
outliers are pretty symmetric since the regression line lies relatively close to the
1:1 line which further justifies the arithmetic mean function for merging. As
the subsequent analysis and plausibility checks of all sensor readings revealed,
there is one exception in our deployment where an imbalance within a sensor
pair exists. In the irrigated control (CON) cultivar 2 plot, there is a significant
deviation of sensor 0x8, as demonstrated in Figure 7(b). The reason of the de-
viation is unclear and might be the result from an incorrect calibration or an
adverse positioning of the sensor. However, we believe that this kind of inaccu-
racy will be likely in large-scale productive WSN systems. Thus, we decided to
not exclude the impaired sensor from our comparative analysis, but occasionally
refer to results that do not include the possible errors from sensor 0x8 in order
to highlight the achievable potential of WSN-based LAI monitoring.

Excluding the exception mentioned above, the pairwise scatter plots of cal-
ibrated PAR samples from below sensors in Figure 7 allow additional insights
into the great potential of our approach: The choice of particular sensors for the
pairwise comparison does characteristically influence the correlation coefficients,
most notably 72 as demonstrated in Figure8. That means, there is a cultivar-

specific difference between the correlation of sensors in different cultivars at the
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Figure 7: Pairwise Correlations of calibrated PAR samples from below sensors.

same location compared to sensors in the identical plot (same cultivar, same
location), cf. Fig. 7(a) vs. (¢) and Fig. 8. Moreover, this difference is more signif-
icant if sensors within the same cultivar but in different sensing locations are
considered (same cultivar, different locations), cf. Fig. 7(d) and Fig. 8. Thus, it
already appears that our approach is able to distinguish between the cultivar-
specific crop growth characteristics (cultivar1vs.2) and the location-specific
difference in growth trajectories induced by drought stress within the ROS. In
both cases, there is a noteworthy difference with regard to the DOY when read-
ings are gathered. Whereas readings from the first half (gray) in Figure 7 do not
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essentially differ from readings of the second half (blue) concerning their sym-
metry, there is a clear mismatch in symmetry of both classes if both sensors are
positioned in different cultivars and/or locations. This observation additionally
confirms that cultivar- and location-specific differences are provoked by drought
stress. Finally, the differentiation between both cultivars in Figure 8 (same cul-
tivar, different locations) reveals different characteristics of both cultivars. A
lower variance and a higher median of the determination coefficient is achieved
by cultivar 2 if samples from ROS and CON are compared. Hence, in this ex-
periment, cultivar 2 (Gordian) performs better in the harsh ROS environment

regarding the LAL

5.2. LAI-Estimation

Given the preprocessed PAR samples that have been calibrated, smoothed,
and merged, LAI estimation for each wheat plot is straight-forward. LAI es-
timates can be easily derived by the generic formula in Equation 1 (Sec.2.3)
using samples of the same interval of merged below sensor readings and the
corresponding above reference readings along with the preliminary correction
parameter w = 1.24. However, this results in preliminary LAI estimates only,
that possibly highly vary over the time of day, as exemplarily demonstrated
by different daily snapshots visualized in Figure9. In the upper part of each

subfigure, merged PAR samples of each position are plotted over the time of
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the day, i.e. all wheat plots and the corresponding above reference (black). The
resulting LAI estimates are included in the lower part (second y-axis). The
snapshots already provide a first impression for the daily LAT variance and also
indicate that this variance is very weather-depending. On sunny and unclouded
days (cf.Fig.9(a)) there is a very pronounced daily pattern, namely the daily
low of decreased LAI estimates from roughly 09:00 to 18:00. If the weather
is cloudy or rainy, the daily LAI time series are apparently much more sta-
ble (cf.Fig.9(b) and (c)). Consequently, LAI variance changes accordingly, if
weather conditions are changing on days with variable weather (cf.Fig.9(d)).
Another aspect that can be observed in Figure 9(b) is the effect of the ROS that
covers the corresponding wheat plots during periods with rainfall, resulting in
an invalid LAT increase on the ROS site.

In conclusion, the daily LAI variance shows that it is very reasonable to
link sensor data with weather information and to investigate the environmental
factors that dominate the weather-dependency. Moreover, it is important to
note that a suitable post-processing of daily LAT estimates is necessary to reduce
potential noise and smooth LAT time series in order to obtain meaningful growth

trajectories.
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5.8. Post-Processing and Ground Truth Preparation

The SunScan estimates, serving as ground truth reference, are available for
certain days in the wheat growth period only, as described in Section2.4. On
that days, SunScan measurements have been conducted once, at a single point
in time. This has two consequences:

(1) We initially use the daily arithmetic mean of WSN-based LAI estimates
for the comparison. Then, additionally to the daily means, a moving average
filter is optionally applied, similar to the multi-day aggregation proposed by Qu
et al. (2014a) who use a 8 day window and found 3-8 days as a reasonable period
to capture the dynamic growth process of leaves. Therefore, we calculate the
moving average (referred to as MOVAVG) with a sampling window size of 7,
i.e. £3 adjacent days, in order to smooth the overall LAI time series and also
to bridge gaps where daily means are missing, e.g., due to technical problems.

(2) An option to approximate SunScan LAI estimates on a daily basis in or-
der to enlarge the observation size IV for a later correlation analysis is also con-
sidered. We tested different approximation methods and finally chose (i) LIN:
the simple linear interpolation between individual daily value, and (ii) POLY:
a polynomial approximation (degree = 5) as reasonable candidates to approx-
imate the real LAI trajectories. Both methods can optionally also be applied
to the daily WSN LAI estimates, complementary to the moving average. The
effect of the different approximation methods is exemplarily shown in Figure 10
for both cultivar 1 plots.

In Figure 10(a), the ground truth data for the comparative analysis and its
different approximations are visualized. Usually, drought stress leads to a lower
LAI maximum (LAI,,,.) that is reached earlier in the growing season as can also
be observed in the figure, clearly emphasized by the POLY approximations. For
that reason, LAI,, 4, is an important parameter of crop physiology. Note that
both peaks and the temporary decline of the ROS curve (green) at DOY 146
are caused by occasional irrigation which was conducted in order to prevent
excessive drought stress. The corresponding LAI time series obtained by the

WSN with data processing and pre-filtering (Fig. 10(b)) already show promising
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Figure 10: Approximation of LAI estimates over the wheat growth period for all sensing

locations of the deployment (ROS locations are shaded in green, CON in blue).

similarities. However, during the last third of the deployment period (ripening
phase), i.e. approximately from DOY 161, there is a systematic discrepancy
in the CON LAI curves. The WSN CON time series remains at a high level
compared to a clearly decreasing SunScan series. The reason for this discrepancy
is that SunScan series actually estimate the GLAI (cf.Sec.2.4). In contrast,
due to fixed sensor locations, the WSN approach is not able to differentiate
green from yellow leaves. Neverthelss, the development of GLAI can be entirely

monitored by the WSN until LAT,,, is reached.

5.4. Preliminary LAI Correlation Results

The processing chain presented in the previous subsections creates LAT es-
timates and enables a preliminary comparative analysis of WSN and SunScan
LAT estimates. In the following, results of this analysis are briefly introduced
and, at the same time, impacts of different previous processing steps are shown,
before being improved by important filter mechanism in the next section.

Due to the GLAT issue, the comparison is limited to the period DOY 120—
161 and excludes the ripening phase. Table 2 summarizes the results according

to the metrics introduced in Section4. Here, naive represents the setting with
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Table 2: Correlation Evolution — Part 1.

naive Preprocessing Post-processing w/o sensor 0x8
Metric MR ML PP MR ML PP MR ML PP MR ML PP

r? 0.76 0.46  0.71 0.80 0.66  0.82 0.88 0.81 0.82 0.88 0.85 0.78
N 22 158 158 22 149 158 22 160 158 21 155 158
«a 1.62 0.83 1.26 1.30 0.93 1.22 1.30 1.19 1.22 1.14 1.10 1.25
B -0.28 1.04 041 -0.04 0.64 0.17 0.03 0.20 0.17 0.25 0.30 0.10

nRMSE 0.62 0.42  0.49 0.34 0.24 0.32 0.31 0.29  0.32 0.08 0.09 0.12

(MR = moving averaged WSN vs. raw SunScan estimates, ML = moving averaged WSN vs. linear

approximated SunScan estimates, PP = polynomial approximated WSN vs. SunScan estimates

r2: coefficient of determination, N: sample size, a: slope , 8: intercept)

s12 nearly unprocessed data (only PAR bundles are averaged). Then, this setting is
successively extended by minimum PAR threshold (PARTHRESH ), by applying
s1a  a priori determined calibration factors, by the median filter (preprocessing), and
finally by the moving average on daily scale (post-processing). Moreover, due to
si6 the observed deviation of sensor 0x8 (cf. Sec.5.1), there are two additional set-
tings, one ignoring sensor 0x8 when merging the cultivar 2 samples of the CON
s1s  plot, and the other one, completely ignoring cultivar 2 CON plot in the compar-

ative analysis. For each setting, three combinations of LAI approximations are

]
N

o considered: MR, ML, and PP, representing the approximations MOVAVG (M),
LIN (L) and POLY (P), where the first character belongs to WSN and the second

s22  to SunScan LAI time series, respectively.

The core message of the results listed in Table2 is visualized in Figure11

« that highlights the evolution of correlation quality improvements for different

]
N

approximation settings. These (preliminary) results show a significant improve-
s2s ment achieved by an adequate processing and, furthermore, already exhibit a

high level of correlation.

s2s 6. Filtering

An appropriate filtering of raw sensor data is crucial to further improve the

o quality of our approach and can be integrated in the preprocessing phase of the

]
w

processing chain as sketched in Figure 5. During the data analysis, we explored

s3> and developed various filter mechanisms and present the most important filters
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Figure 11: Impact of basic data processing phases on the quality of ground truth correlation.

in this section. First, a generic method is introduced. Then, application-specific
approaches are proposed that are tailored to WSN- and radiation-based LAI

monitoring.

6.1. ICA Filter

A very powerful technique from the domain of signal processing is the in-
dependent component analysis (ICA) that can be applied in order to separate
additive subcomponents from a multivariate signal. However, the ICA is a blind
source separation, i.e. it works without the aid of additional information about
the mixed input signals but also does not provide any information about the
separated outputs. Transferred to the PAR time series, our goal is to eliminate
undesired interfering signals. Possible reasons of interfering signals are shading
effects from the environment or temporal technical failures, for instance, that
are assumed to meet the requirements of being non-Gaussion and statistically
independent. However, only for the solar irradiance signal captured by the three
above reference sensors, the ICA is reasonably applicable and enables a filtering
of unintended noise in the reference signal. We use a time window of 7 days for
the ICA of the mixed above signals with a zero padding for missing values and
identify one output signal as reasonable candidate of an interfering signal. Then,

a proper threshold is evaluated and used to create a binary filter. Regarding
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the following L AT estimation, the elimination of above reference samples also
implicitly discards ground samples since simultaneous pairs are required for LAI

determination, cf. Sec. 5.2.

6.2. Assessment-specific Filtering

On the particular site of our deployment, the ROS purposely covers the
wheat plots during rainfall periods and affects LAT estimation. Hence, such peri-
ods need to be filtered, although we observed only a slight impact of precipitation
in the CON plots that often seems to be negligible, e.g., at DOY 145 (Fig. 9(b)
in Sec.5.2). However, the overall precipitation during the deployment was rel-
atively rare and low. Thus, a sound scientific statement on the impact of rain
is not possible using our data set. For the RAIN filter, we apply a conservative
approximation of hourly weather information leading to a comparative strong
binary filter. Note that if accurate information about current precipitation is
not available, a raindrop sensor could be easily integrated into the WSN system
in order to assist such a rain filter.

The analysis of the probability distribution of multiple PAR readings within
a PAR bundle of individual sensor samples shows a very low standard deviation
of bundles with occasional outliers. The cause of such outliers is twofold. On the
one hand, PAR measurements at low illuminance tend to have lower accuracy,
and thus, more variance, particularly in discretized digital readings. Affected
sensor samples are mainly already filtered by the PARTHRES mechanism in
the preprocessing phase. On the other hand, short-term dynamics in the plant
stock caused by leaf movements that are primarily triggered by wind results
in an increase of the variance. As the latter reason of variance is induced
by environmental dynamics, we found a characteristic difference between the
variance of bundles gathered within wheat plots and of bundles captured by the
above references that are affected by leaf movements.

With regard to the filtering of raw sensor data, a wind filter would be possi-
ble if accurate wind information is available for the certain site. However, since

wind is the secondary quantity affecting the PAR deviation, we prefer a pure
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Figure 12: Filter masks of the proposed filters in a temporal binary matrix representation and

their different distributions.

standard-deviation-based filter (referred to as STDPAR filter). Hence, based
on the deviation determined for each data stream in the preprocessing phase,
we create a sensor-specific binary filter and discard all PAR samples exceeding
the threshold. A corresponding filter mask for sensor 0x1 is exemplarily shown
in Figure 12(a) along with the filter masks of both previous filters. In each fig-
ure, the temporal distribution of filtered intervals (black) can be observed. The
STDPAR filter mainly eliminates samples in dawn and dusk periods that tends
to be unreliable due to low illuminance as well as samples impacted by wind
during the day. The ICA filter mask does not particularly focus on dawn/dusk
periods (Fig.,12(b)) and, similar to the RAIN filter (Fig. 12(c)), it has no mean-
ingful pattern.

7. Correlation Results

Starting from the preliminary correlation results of Section 5.4, the impact
of each proposed filter and the additional improvement regarding the accuracy
and consistency of LAI time series are again evaluated by a comparative analysis
to SunScan LAI estimates. The results are quantified in Table 3 and Figure 13.
It turns out that the proposed filtering is an appropriate fine-tuning optimiza-
tion that has a comparatively lower impact than the basic data processing. It

results in a slight, yet effective increase of the already high determination co-
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Table 3: Correlation Evolution — Part II.

processed + ICA filter + RAIN filter + STDPAR filter
Metric MR ML PP MR ML PP MR ML PP MR ML PP

r? 0.88 0.81 0.82 0.89  0.82 0.82 0.89 0.83 0.83 0.91 0.85 0.84
N 22 160 158 22 160 158 22 156 158 22 140 158
a 1.30 1.19 1.22 1.25 1.16 1.16 1.27 1.17 1.19 1.33 1.22 1.23
B 0.03 0.20 0.17 0.14 0.26 0.28 0.11 0.26  0.25 0.05 0.20 0.22

nRMSE 0.31 0.29 0.32 0.08 0.10 0.10 0.08 0.10 0.10 0.07 0.09 0.10

618

(MR = moving averaged WSN vs. raw SunScan estimates, ML = moving averaged WSN vs. linear
approximated SunScan estimates, PP = polynomial approximated WSN vs. SunScan estimates

r2: coefficient of determination, N:sample size, a: slope , 8: intercept)

efficient (Fig. 13(a)). At the same time, the overall data set is further reduced
by even more samples using the filter operations than by the prior preprocess-
ing (cf. Fig. 13(Db)).

In addition, Figure 14 highlights two correlation properties of the proposed
filtering. First, concerning the accuracy of our approach represented by the
nRMSE, a clear trend can be observed (Fig. 14(a)). The higher the improvement
of the correlation achieved by successive filtering, the higher is also the accuracy.
Second, the linear regressions of all individual correlation pairs with different
approximations result in a very low interception (Fig.14(b)). Thus, in order to
neglect this additive correlation parameter and to focus on the slope, the linear
regressions are forced to the origin (ap). The results are also integrated into
the figure (unfilled markers) and are accumulated around a slope of 1.324 as

emphasized by the ag boxplot.

8. Discussion & Comparison to Related Work

8.1. LAI Calibration

For a consistent LAT estimation using our radiation-based approach and the
formula in Equation 1 (Sec. 2.3), a reliable calibration factor w is required. This
factor is plant- and site-specific and is related to the so-called extinction coef-
ficient. With regard to our approach, this calibration factor has already been

successfully determined for maize (cf. Bauer et al., 2016). So far, a preliminarily
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Figure 13: Impact of filtering on the quality of ground truth correlation.

assignment of winitia; = 1.24 was used. Taking the fully-processed and filtered
LATI estimates and different approximation setups into account, a reasonable
assignment for wheat cultivars can now be determined. We found that in all
approximation setups and across all filter steps in Table 3, « is relatively con-
stant. The statistics of the corresponding boxplot in Fig 14(b) gives the factor
ag = 1.324. This value results in wyheat = 0 Winitiar ~ 1.324 - 1.24 ~ 1.64.
Using this calibration factor, LAI estimates can be finally adjusted and
meaningful LAI trajectories can be derived. Figure 15 compares WSN-derived
LAI time series (moving average) with series from manually gathered SunScan
estimates as ground truth. Here, each subfigure corresponds to the according
approximation pair considered in Section 7. Independent of the particular ap-
proximation setup, the comparison reveals that our approach can greatly fit the
dynamic wheat growth process. Moreover, change tendencies induced by inten-

tional drought stress in the ROS plots and even cultivar-specific differences are
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Figure 14: Correlation properties of processed and filtered LAI series.

captured by the WSN.

In accordance to the findings of Qu et al. (2014a), the multi-day aggregation
using the MOVAVG approach enables the most reasonable results. Regard-
ing this approach, we found that the very high correlation with raw SunScan
estimates (r2=0.91, Fig. 15(a)) still remains on a level that is usable in prac-
tice (r? =0.85, Fig. 15(b)) when the sample size N for the correlation is artifi-
cially increased by the linear interpolation of SunScan estimates. However, we
should note that, despite of the wide scientific use and acceptance, the accuracy
of commercial LAT instruments and plant canopy analyzers under certain condi-
tions are discussed controversially in literature (e.g., Wilhelm et al., 2000; Bréda,
2003; Jonckheere et al., 2004; Garrigues et al., 2008). Thus, using ground truth
LAT values assessed by the SunScan device introduces a certain error to our
comparative analysis. Hence, an absolute scientific evaluation on the accuracy

of our approach is hardly possible.
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Figure 15: Final post-processed and filtered WSN LAI trajectories in comparison with

SunScan ground truth using different approximation setups.
8.2. Limitations of Our Approach

The simplified model of Monsi-Seaki (Monsi and Saeki, 1953) used to derive
LAI information in our approach, abstracts from certain factors that influence

this derivation and, thus, has its limitations. In our approach, this abstraction
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is addressed using the correction factor w and the daily averaging of LAI es-
timates that both result in promising LAI trajectories and a high agreement
to the SunScan reference. Nevertheless, we observed a daily pattern of LAI
time series on sunny days (cf. Fig. 9(a) in Sec.5.2). This pattern is well-known
and primarily caused by the SZA 6, since the incident angle of sunrays has a
direct impact on the path length S(6;) that sunrays travel through the canopy
to the ground. Assuming that the canopy is horizontally large enough, S(6;)
can be expressed as S(;) = cos(;)~!. Taking this into account, the simplified
LAT calculation of Equation1 can be extended by this trigonometric function
resulting in a product that is referred to as contact number x (Lang and Yueqin,
1986). Moreover, the SZA is not the only factor that influences LAT estimation.
Hence, Equation 1 can be further extended by the species-specific G-function
G(0L,0) that also takes the MLA 6, into account (cf. Weiss et al., 2004). This

is generally expressed as:

R CA B -1
LAI = m = —cos(s) In (j) G(0r,05)"". (2)

Unfortunately, the G-function is usually unknown which makes it difficult to
estimate an absolute LAI. However, under the assumption of spherical distribu-
tion of canopy leave angles, it has been analytically shown that for a particular

zenith angle 6; = 57.5°, this function is independent of §;, and constant with

) . (3)

As already mentioned in Section 2.2, there is only a limited amount of di-

approx. 0.5 (Wilsoni, 1963), resulting in:

LAI = -2 cos(57.5) In (

| &

8.3. Comparison

rectly related work regarding WSN-based LAI assessment. Li et al. (2015)
propose a novel sensor type that uses DHP for indirect LAI assessment. How-
ever, their sensor device is much more complex and less cost-effective, thus, not
suitable for large-scale deployments. Only a few comparable real-world deploy-

ments in agricultural context exist, most notably LAINet (Qu et al., 2014b,a)
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and the monitoring system proposed by Shimojo et al. (2013). Generally, our
experiences with real-word deployment is consistent to practical challenges re-
ported in the literature. The numerical quality (represented by r? and nRMSE)
of our results can clearly compete with related WSN approaches and also with
more complex techniques that use more powerful devices such as DHP (Ryu
et al., 2012), for instance. Both approaches mentioned above also produce LAI
trajectories but with lower temporal resolution and differ from our approach
in terms of the sensing device and/or in terms of application. Furthermore,
both approaches do not take a bundle of multiple consecutive PAR readings
as appropriate filter into account. Shimojo et al. (2013) use a similar device
and a single-angle algorithm for greenhouse monitoring but without an optical
bandpass filter. In contrast, Qu et al. (2014a) developed a more complex device
consisting of multiple sensors. Following a multi-sensor and -angle algorithm,
their approach is used for forest LAI estimation and also to collect ground LAI
of maize for the validation of remote sensing products (Qu et al., 2014b).

For a comparison to related approaches, we also implemented the single-
angle LAT estimation according to Equation 3, referred to as LAI-575 and also
the sensing strategy introduced by Shimojo et al. (2013). In order to cope with
the weather impact, the authors propose an algorithm for a proper measure-
ment timing decision based on empirical knowledge. On sunny days, PAR
measurements should be taken just before direct sunlight reaches the over-
foliage (e.g., 07:00) whereas on overcasted days periods should be used for the
measurements when the light intensity remains on a constant level (e.g., 09:00).
We implemented Shimojo’s approach and, using the DWD weather information,
we adapted the proposed timing to our time zone and region.

However, the fixed measurement timing was found to be inappropriate for
our long-term deployment. We consequently adapted the timing to seasonal
variations of the sun path. By this means, a significant performance increase
could be achieved that is however still outperformed by our approach (denoted
as LAI-wheat) as visualized by Figure 16. A possible reason for this mismatch

are the different sensor devices and that, due the application area in green-
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house monitoring, Shimojo’s approach neglects wind effects that are addressed
by our approach. Furthermore, the amount of cloudy days is much lower in our
deployment because of different season and region which might make this ap-
proach not feasible for a fine-grained wheat LAI assessment. Moreover, Figure 16
shows that our approach also outperforms the single-angle approach LAI-575
that qualitatively comes closer to our approach. The single-angle algorithm has
the advantage of maximal energy efficiency because it requires to measure the
transmittance solely in one particular SZA. But at the same time, it is generally

more impacted by weather factors.
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Figure 16: Comparison with related LAI assessment approaches in WSNs, exemplarily shown

for the particular approximation setup WSN-MOVAVG vs. SunScan-LIN.

8.4. WSN-related Issues

The LAlI-specific STDPAR filter proposed in Section 6.2, could be applied in
a future WSN for an early detection of noisy and unusable PAR bundles directly
on the sensing devices. Hence, it could assist the in-situ rating of a specific
sample and the decision of forwarding or discarding. That would significantly
reduce communication cost and, thus, contribute to energy-efficiency which is
one of the fundamental challenges for WSNs.

In the presented deployment, the sampling strategy is an intended oversam-
pling and the question of an adequate LAI sampling interval that achieves a
reasonable energy-accuracy tradeoff is still an open issue and will be part of our

future work. Nevertheless, the total data size collected using the oversampling
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strategy is less than 5 MB/sensor during the entire deployment. Thus, the pro-
duced data is absolutely manageable. Regarding forwarding to the backbone
network (e.g., Internet), the resulting daily reports (750 kB/day) could be fur-
ther reduced by the proposed in-situ filtering as well as by existing aggregation

and compression algorithms.

9. Conclusion

In this paper, we used our radiation-based LAI sensor prototypes in a long-
term WSN deployment for a continuous monitoring of crop LAI. We demon-
strated the general feasibility and the great potential of our system. A cultivar-
and site-specific correction factor was successfully determined for winter wheat
and we showed that our approach enables temporal fine-grained LAI trajecto-
ries. These trajectories are found to yield a high accuracy and, thus, to fit the
dynamic growth process of crops. Moreover, cultivar-specific differences and
change tendencies in this process can be reliably detected with our system as
shown by experimental results in the rain-out shelter environment with inten-
tionally induced drought stress.

For a purposeful processing of WSN data, we applied standard filtering mech-
anism and multi-day averaging, but also introduced a novel filter for outdoor
environments that is able to eliminate noise induced by small-scale dynamics
in the plant stock. Furthermore, a comparison to related approaches showed
that for high-quality LAI profiles, it is worth considering multiple incident an-
gles across each day in the process of LAI assessment. However, a reasonable
quantity and specification of important angles for our approach is still missing.
Therefore, a comprehensive evaluation of adequate sensing strategies is planned
in our future work. We will use the data from this deployment to further inves-
tigate different sensing strategies and the trade-off between the sampling rate
and energy consumption in order to significantly reduce the required sampling
rate. By doing so, our goal is to answer two important questions: How often do

sensors have to sample the PAR and when is the most efficient time to do that?
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