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Abstract—The integration of modern information technolo-
gies into industrial agriculture has already contributed to yield
increases in the last decades. Nowadays, the emerging Internet of
Things (IoT) along with Wireless Sensor Networks (WSNs) with
their low-cost sensors and actors enable novel applications and
new opportunities for a more precise, site-specific, and sustainable
agriculture in the context of Smart Farming. In this paper, we
present a holistic agricultural monitoring system, its design, and
its architectural implementation. The system primarily focuses on
in-situ assessment of the leaf area index (LAI), a very important
crop parameter. Moreover, we introduce real-world challenges
and experiences gained in various deployments. Finally, first
results are exemplarily demonstrated in order to briefly address
the potential of our system.

I. INTRODUCTION

The climate change and the increasing demand of food
pose serious challenges to modern agriculture. The global
population is predicted to increase significantly and, therefore,
food production must increase by 70 percent until 2050 [7]. At
the same time, the scarcity of water and shortage of arable land
is growing. Thus, there is a demand for an adequate selection
of crop types, a suitable adaption of farming practices, and
sustainability. Fertilization, crop treatment, pest control, and
most notably irrigation management need to be adapted to
continuously changing conditions. Farming activities have
to be conducted in a sophisticated manner to save scarce
resources.

To achieve this, apart from agriculture and agronomy,
research expertise of many other domains need to be efficiently
combined. Much effort of using scientific achievements and
novel technologies from other domains has already been
made. More and more digital innovations have been inte-
grated into the agricultural sector producing the notion of
Precision Agriculture [12]. Recently, Internet of Things (IoT)
concepts extend Precision Agriculture with smart, distributed,
and collaborating sensors and technologies that are nowa-
days well established in other industrial sectors and also in
home automation [6]. This extension is often referred to as
Smart Farming and comprises all steps from sensor-based data
gathering and communication to data processing, storage, and
analytics. Moreover, analytic results can be visualized by IoT
frontends and feed decision support systems in order to help
farmers to make better and more sustainable decisions.
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In the context of arable farming, IoT systems have the
potential to provide new insights and provide an up-to-date
situational awareness with a much higher level of spatio-
temporal granularity of monitoring [6]. They support the
understanding of factors influencing crop growth and yields,
which is very crucial for a sustainable agriculture. Via site-
specific management, [oT systems help to significantly save
farm resources and, thus, increase farm output. Furthermore,
IoT-based crop monitoring also improves yield modeling and
the quality of yield predictions. Overall, the emerging digital
revolution, particularly IoT integration into modern agricul-
ture, is a key enabler that allows to automate many processes
and support them with valuable additional information.

Since the basis of the IoT chain from crops to farmers is
sensor-based data gathering, sensor devices and their in-situ
deployment is fundamental for the success of Smart Farm-
ing. Such devices range from small, low-cost, and resource-
constrained sensors to complex high-accuracy sensor platforms
that could be very expensive. For a large-scale crop moni-
toring, generally many sensors are required. Hence, from an
economic perspective, the price of individual sensors is crucial
for the return on investment (Rol). In Wireless Sensor Net-
works (WSNs), such cheap devices are typically used for en-
vironmental sensing of physically measurable parameters [1].
These are wirelessly interconnected and designed for large-
scale and long-term deployments. As they are predominantly
battery-driven, they are likewise highly resource-constrained.
Thus, individual sensors have limited sensing accuracy that
is compensated by the large number of collaborating devices
continuously collecting environmental information. Moreover,
ground-based WSNs can be complemented by remote sensing
that is based on airborne imagery. This is usually acquired by
satellites or recently by drones and, amongst others, is used
to derive information about crop growth. This is particularly
beneficial to approximate WSN-based in-situ information to
even larger areas.

During the last decade, WSNs were already deployed
in the agricultural domain, improving remote monitoring of
agricultural resources and products, e.g., [8], [13]. Their po-
tential of increasing productivity and waste reduction has been
shown to be very promising [2]. More recently, suchlike de-
ployments are successfully integrated into IoT platforms [15]
using modern cloud technology. In this paper, we present
an agricultural crop growth monitoring system and report on
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our experience of real-world deployments. The focus of these
deployments is on a specific crop parameter, namely the leaf
area index (LAI). The LAI is a widely-used key parameter that
provides information about the photosynthetically performance
and vital conditions of plants, cf. [10]. The parameter is related
to vegetative biomass and simply defined as a dimensionless
quantity of leaf area per ground surface area. Since it also
serves as an indicator for yield-reducing processes caused by
diseases or mismanagement, it is very interesting in the agri-
cultural context and used for yield modeling. The overarching
goal of our system is long-term continuous crop monitoring
that enables LAI profiles with a fine-grained spatio-temporal
resolution. Therefore, our previously developed sensor pro-
totype [4] (cf.Fig.1) is used. It senses the ambient light in
the photosynthetically active radiation (PAR) range. From two
simultaneous PAR measurements, one below and the other one
above the canopy, the transmittance of solar irradiation through
the canopy can be derived that allows an estimation of the LAI.

II. REAL-WORLD CHALLENGES

Although a considerable progress has been made in the
last decade, the deployment and maintenance of real-world
WSNs are still very challenging. Beyond the general WSN
challenges, i.e. hardware constraints of small sensor devices,
their power consumption, and low-power communication (cf.
[1]), there are specific additional challenges for long-term
outdoor deployments. The main reasons of such challenges
can be grouped into two categories: (1) environmental in-
duced challenges and, particularly for agricultural deploy-
ments, (2) wildlife caused challenges. Figure 1 provides a little
impression by a selected set of pictures showing technical
problems with which we were faced in our deployments.

A. Environmental Challenges

The natural environment has a strong impact on the oper-
ability of a WSN. Sensor motes are exposed to harsh weather
conditions with probably high temperature fluctuations and
rainfalls. Also humidity and soil moisture tends to be compar-
atively high, particularly if devices are directly deployed in the
field. During our first deployment, it turned out for instance
that the cases we designed were not completely sealed and
durably water-resistant. As a consequence, condensation water
occurred under the diffuser cap of some sensors (cf. Fig. 1(a)).
Moreover, motes are prone to corrosion and short circuits
which could lead to operational instabilities. Even worse,
serious hardware failures are possible and have actually been
occurred (cf. Fig.1(b)). Furthermore, in dry seasons, dust can
impair sensors, whereas in rain periods, mud can influence
sensors that are placed at ground level (cf. Fig. 1(c)).

However, not only the sensor hardware is affected by
adverse weather effects, but also the connectivity of the
entire network since radio link qualities are sensitive about
highly variable environmental conditions. Moreover, agricul-
tural fields usually are far away from the electricity grid.
While this has not impact on low-power and already battery-
driven WSN devices, the lack in reliable power sources does

(b) Burned-out hardware box caused
by cable fire.

(a) Condensation water in the
diffuser cap of a PAR sensor.

;

(c) Mud on a ground-level PAR sensor.  (d) Bite marks from wildlife.

Fig. 1. Impressions of harsh outdoor impacts on WSN equipment.

affect more complex IoT components such as weather stations
and Internet gateways. Hence, it has to fall back on solar
energy solutions. Unfortunately, in some of our deployments,
the installed solar energy equipment appeared to be not fully
reliable and led to partial disruptions.

B. Wildlife-related Challenges

Whenever sensors are deployed in rural areas for an
unattended operation, conflicts with animals and wildlife are
unavoidable. Moved sensors, nibbled cables, or even bit marks
on sensors (cf.Fig.1(d)) are not uncommon for ground-level
equipment. But also sensors placed on higher stands above
crop level could temporarily be covered by birds. Particularly
in our use case that depends on PAR measurements, this
covering is totally interfering. Finally, also insects forming
nests in sensor housings can have negative impacts.

Overall, suchlike challenges of both categories were also
reported by [11], more than one decade ago, but still relevant
and existing in the community as recent publications on this
subject show. In addition, farming activities and, sadly, van-
dalism are reported to be a problem for agricultural WSNs [§]
but fortunately did not occur in our deployments.

Some of these challenges could be mitigated by industrial
outdoor cases, enhanced solar energy equipment, professional
uninterruptible power supply (UPS) systems, more robust and
shielded cables, or by electric fences. However, it is costly
and a tradeoffs between such additional costs and operational
safety arise. Nevertheless, It is hardly possible to tackle all
challenges that potentially could occur in real-world deploy-
ments and unforeseen situations should still be expected. In



practice, a non-disruptive WSN operation could not be guar-
anteed and erroneous sensors could never totally prevented.
Thus, we believe that sensor redundancy is the most reasonable
approach to cope with adverse and unpredictable situations.
As a consequence, with regard to the return on investment
(Rol), production costs of individual sensors become relevant.
Hence, it is crucial to realize a cost-efficient sensing platform
as already proposed with our sensor prototype [4].

III. SYSTEM DESIGN
A. Concept & Architecture

In order to cope with both types of challenge mentioned
in the previous section we use well-tried principles. Our key
approaches are hardware redundancy, software simplicity, and
remote control of the entire system. The architecture we
have developed primarily comprises a WSN-based monitoring
system that is tailored for in-situ LAI assessment. Therefore,
two essential measurement positions are required: a ground-
level sensor below the canopy (G) and a corresponding
above reference sensor (R), both measuring incoming solar
irradiation in the PAR range, cf. [4]. Both devices must not
be located at the same position, but their spatial distance
should not be too large either in order to ensure similar
irradiation conditions. Hence, we believe that clustering of
several spatially distributed ground sensors in communication
range with a single above reference acting as cluster head
is reasonable for LAI monitoring WSNs. Thus, sensor motes
were organized in clusters using a simple star-topology within
each cluster. Cluster heads compared to ordinary ground
sensors were assumed not to be power-constrained and always
active. This appears reasonable because this kind of sensor
devices could in practice be powered by small solar panels.
In conclusion, in our current system, there is no demand for
routing protocols. Also time synchronization protocols are not
required, since cluster heads are constantly reachable to ground
sensors. Thus, they could also adjust their reference sampling
to the receive events of ground packets. Cluster heads, in turn,
are connected to a central base station. Depending on the WSN
size, multi-hop routing might be necessary for this connections
but are currently not yet considered in our deployments.
Instead, cluster heads are connected via WLAN.

The overall architectural concept consists not only of the
WSN itself, but also of an IoT-based infrastructure as sketched
in the architectural overview of our system in Figure2. For
that purpose, the central base station acts as a gateway to a
conventional IP-based IoT network. Internet connectivity is
established via public land mobile networks (PLMN) com-
munication which is realized by an LTE modem attached to
the gateway. The data gathered by sensors and collected by
the base station is further transmitted to a farm management
information system (FMIS) in general (or a customized server
in our case) for data analytics and visualization. Data transport,
is realized by MQTT [3], a publish-subscribe messaging pro-
tocol with hierarchical structured topics for individual message
streams. MQTT clients can act as a publisher and/or as a
subscriber and exchange messages according to specific topics.

Internet

WLAN PLNM

WSN

Cluster n+1

Cluster n

Fig. 2. Architectural Overview. Clustered ground-level sensors (G) and above
reference motes (R) are connected to Raspberry Pis (RPi). Via PLMN com-
munication, they are further integrated in an MQTT-based IoT architecture,
making in-situ crop information instantaneously available.

A central broker manages connections to these clients and
their registrations. MQTT is suitable to exchange periodically
gathered sensor data from agricultural WSNs, cf. [5], [14]. In
the current state of our architecture, MQTT is used at the IoT
layer only, but following [14], the integration of MQTT into
the WSN is planned as future work.

Overall, our architecture is modularly designed and flexible
because standard open-source IoT software and commercial
off-the-shelf (COTS) hardware is used. Further types of agri-
cultural sensors such as soil moisture and temperature sensors
can seamlessly be integrated. Also a smartphone-based LAI
assessment [9] has been prototypically connected. The linking
to complementary technologies such as remote sensing would
be feasible as well and very interesting for our future work.

B. In-situ WSN

1) Hardware Components: The low-cost IEEE 802.15.4
compliant sensor prototype introduced in our preliminary
work [4], i.e. a TelosB'-based platform (8 MHz TI MSP430
MCU, 10kB RAM), is used as basic sensor in our monitoring
WSN. This open-source COTS mote has three integrated envi-
ronmental sensors for temperature, humidity, and light. Using
a suitable optical filter and diffuser accessory, the latter sensor
has been shown to be appropriate for PAR measurements that
allow to derive reliable LAI estimates. In addition, further
external sensors can be connected using the platform’s SPI
or I2C bus and its GPIOs.

In harsh outdoor environments, wireless communication
is prone to be affected by adverse weather conditions. Link
qualities are known to be highly varying in practice. Signals
in the 2.4 GHz radio band, as used in WLANSs and also in
WSNs, are attenuated by humid air and wet plants. In fact,
high error rates were observed in our deployments. These can
be mitigated by forward error correction (FEC) techniques
such as network coding, which has already been demonstrated

Uhttps://www.advanticsys.com/shop/mtmem5000msp-p- 14.html



TABLE I
HARDWARE OVERVIEW OF IN-SITU COMPONENTS.

— Costs

Component Description Task (USD)
TelosB 802.15.4 mote + antenna sensing/gateway | 105
Accessory case, diffuser, filter, cf. [4] sensing/safety 35
Raspberry Pi3 single-board computer cluster head/ 55

+ accessory gateway
Huawei E3372 | LTE modem Internet comm. | 45
joy-IT StromPi | UPS safety 40
DS1302 RTC safety 2

to be feasible for our scenario [14]. On the other hand, also
wired links are prone to failure due to farming or wildlife
activities. Because of inherently unreliable data delivery and
in order to increase redundancy, we precautionary decided to
use both, wireless and wired connections for redundant sensor
data transmissions in our first deployment generation. Since an
exchange of batteries during the deployment would be very
interfering, we also reused USB connection for additionally
powering all sensors. Also reprogramming of sensors in case
of software reconfigurations or failures was easily possible via
USB. That allowed testing and evaluation of different software
applications. According to the cluster concept, we used clus-
ters of four ground motes. Each mote was attached via USB
to a linux-based Raspberry Pi3, a small, fully-equipped, and
cost-efficient single-board computer that is widely used in the
IoT context. These computers were wirelessly integrated into
a WLAN provided by a central ALIX.6F2 router with UMTS
connectivity. Already in laboratory environments, we observed
occasional software crashes and freezing. Thus, for reasons of
operational safety, we decided to install mechanical timers to
regularly power off all components during night phases when
sensor readings are not required. By this means, we ensure
that the system resumes at least the following day.

In the second deployment generation, the WSN was rear-
ranged to a completely wireless operability, i.e. wireless com-
munication and battery-driven sensors. In addition, Raspberry
Pis were also used as cluster heads along with TelosBs as
WSN gateways. These motes were additionally equipped with
external antennas to amplify radio performance and commu-
nication range. For consistency and software unification, the
ALIX router acting as [oT gateway was replaced by a central
Pi with LTE modem. Each Pi was additionally equipped with
real time clocks (RTCs) which eases the operation in many
ways. For sake of completeness, the hardware costs of both
in-situ devices that are composed for the monitoring system
are listed in TableI.

2) Software Components: The basic acquisition software
of our system is installed on the sensor platform. We use
TinyOS?, a common open-source operating system tailored
for resource-constrained devices, and adapted the sensing
application from [4]. This application is still kept as simple
and light-weight as possible and focused on essential features.

Zhttps://github.com/tinyos

Furthermore, we use extensive logging of all possible data that
can be retrieved on both, the universal asynchronous receiver-
transmitter (UART) and the radio interface, extended with
time stamps and sequence numbers (SNs). This also includes
additional reports about various events such as resets/reboots
of all involved hardware components or NTP synchronization
events, for instance. Again, it has to be differentiated between
the first and the second generation of our deployments. In
the former that uses a wired backbone for energy supply, a
constant sampling rate of 30 samples/h was used, whereas the
rate is precautionary reduced to 6samples/h for the battery
mode of second generation. Here, low power listening (LPL),
the duty cycling of TinyOS, is activated that switches devices
to low-power modes during idle periods. That means, an LPL
interval of 10 min is configured, to further reduce the energy
demand of ground-level sensor devices.

In both generations, each sensor sample consists of a
collection of readings from all environmental sensors available
on the platform, i.e. temperature, humidity, and PAR, one by
another. In order to get more reliable averages and also to
purposely observe small-scale fluctuations, the PAR sensor is
sampled multiple times in a short burst of 25readings with
a temporal spacing of 50 ms. Immediately after all sensors
were sampled, gathered data is then merged and added as
payload to an 802.15.4 frame, together with continuously
incremented SNs. This data frame is then transmitted as
broadcast. Thus, it can be received by all active motes in
communication range, in particular by the cluster heads or
the base station that forwards the payload to the backbone
system. By using broadcast transmission, ground sensors can
receive transmissions amongst each other. These are leveraged
to keep track of link qualities from neighboring devices, since
received signal strength indicator (RSSI) and link quality
indicator (LQI) information can be retrieved from the 802.15.4
radio chip. That is particularly relevant in the first deployment
generation with always active motes. For the purpose of link
quality monitoring, here suchlike information is continuously
collected and transmitted in conjunction with each sample
and could be used for future analysis and network protocol
optimizations. Indeed, in both deployment generations, the
selected sampling rate is a vast oversampling and particularly
not required for a pure LAI assessment. However, our goal
is to create an always-on multipurpose WSN testbed as well
as an extensive data set. This set is intended to be adequate
for advanced analysis of various factors such as link quality
investigations or relevant impacts on WSN-based LAI assess-
ment.

As reliable operations of hard- and software components
during an entire deployment are not expectable, we imple-
mented various safety mechanism. One mechanism is passive
SN synchronization that replaces a strict time synchroniza-
tion protocol. That means, whenever a sensor receives a
transmission of neighboring motes, it inspects the containing
SN. If there is a certain gap to its own SN state, which
probably is caused by a software reset, the current SN is
adapted. Due to LPL in the second deployment generation, the



SN synchronization requires a modification. Here, motes are
programmed to remain active for a certain time after reboots
in order to capture potential transmissions of other devices.

Moreover, we also implemented safety mechanism on
the fully-equipped devices. For instance, for an unattended
operation, RaspberryPis are responsible for monitoring in-
coming data of each attached cluster sensor and automatically
reboots of affected sensors. Furthermore, the central gateway
establishes a permanent SSH reverse tunnel to the Internet
server that allows remote access to Pis and sensors that
could manually be reprogrammed and adapted to unforeseen
challenges.

3) Energy Considerations : In order to evaluate the energy
demand of motes and to validate whether the battery capacity
is sufficient to ensure an operation across the growing season
of common crop types, an empirical energy assessment was
conducted. We measured the electric current in Ampere with
a Fluke 289 True-RMS industrial multimeter for a duration
of 100h and found the average consumption to be roughly
0.2mA. That is consistent to the TelosB specification and,
assuming common capacities of two AA alkaline batteries,
even a very conservative energy estimation results in a sensor
lifetime that will be perfectly adequate for usual crop growing
cycles and most agricultural applications.

C. Remote Monitoring

The core of the IoT infrastructure is the Mosquitto> MQTT
broker that is running on the Internet server. The WSN-IoT
gateway periodically publishes sensor data in specific mes-
sages to that broker. These messages are efficiently serialized
with Google protocol buffers* (protobuf) and subscribed and
stored in a data base. An Apache server provides a web-based
graphical user interface (GUI) and queries the data base. It
is responsible for data analytics and appropriate visualization
of user-initiated content such as temperature and humidity
graphs or LAI trajectories. Furthermore, current sensor status
information is retrievable in the GUI. Therefore, the server
monitors the operability of the network and informs the user
of connectivity disruptions or sensor failures. Using periodic
sensor data as keep-alives, failures are recognized and noti-
fications are displayed in the GUI. In addition, smartphone
notifications via instant messengers are also conceivable. At
the same time, the server provides access to individual sen-
sors for sake of remote reconfiguration and reprogramming.
Beyond WSN data, the Internet server uses external weather
information provided by the Deutscher Wetterdienst (DWD)>
that can be combined with WSN-gathered information.

IV. REAL-WORLD DEPLOYMENTS & PRELIMINARY
EXPERIMENTAL RESULTS

We have experimentally deployed our monitoring system
in the 2016 and 2017 growing seasons at two sites with exper-
imental crop fields in Lower Saxony, Germany: (1) at the In-

3https://mosquitto.org
“https://developers.google.com/protocol-buffers/
5https://www.dwd.de/EN/Home/home_node.html

TABLE I

DEPLOYMENT OVERVIEW.
Deployment JKI1 JKI2 AuL 1 AuL 2
Location 52.296°N, 10.436°E | 52.311°N, 8.115°E
Software 1st generation 2nd generation
Year 2016 2016/17 2017 2017
DOY 105-178  293-11 138-184  187-227
Duration (days) 74 85 47 41
Crop type wheat rape wheat maize
Operation (h/day) 21 19
Sampling interval (min) 2 10
Sampling phase 03:00 — 00:00 04:00 — 23:00
# Samples/day 630 114

stitute for Crop and Soil Science, Julius Kiihn-Institute (JKI),
Braunschweig and (2) at the Faculty of Agricultural Sciences
and Landscape Architecture (AuL), University of Applied
Science, Osnabriick. During these deployments, we observed
LAI developments of three economically important crop types,
namely winter wheat, rape, and maize. A key data overview of
the deployments and sampling properties is given in Table II.

An analysis of the collected data is promising to have a lot
of potential. It could bring new insights such as findings on
the environmental impacts on WSN-based LAI assessment, for
instance. However, such an analysis is very extensive, currently
work in progress, and will be part of our future work. Thus, it
is out of scope of this paper which focuses on system design
and experiences gained in real-word deployments. Neverthe-
less, some preliminary results are exemplarily demonstrated
by Figure 3 as an outlook.

Figure 3(a) shows the temperature and the humidity curves
of two days, gathered by a ground-level sensor that was
deployed in a wheat field. The midday peak of both curves can
be observed and also that they are similar but inverse to one
another. The humidity curve also confirms the relatively high
humidity perceived by sensors at ground level on both days.
The second subfigure (Fig. 3(b)) visualizes the daily time series
of PAR values collected by a single cluster, i.e. one above
reference sensor (R in blue) and four ground-level sensors (G5,
shaded in green). From the ratio GG; to R, LAI estimates can
be derived (cf. [4]). However, the time series in this subfigure
also reveal that only at dawn or dusk, PAR curves are found
to have a certain stability, whereas during the remaining day,
they are highly varying. Thus, an appropriate processing will
be required for a reliable LAI assessment.

Finally, in Figure 3(c), averaged link qualities within clus-
ter C; are shown for a period of one month in the beginning
of the wheat growing season. These are represented by LQI
averages of transmissions from ground sensors G;—G4 to
their cluster head (shaded in green). Moreover, transmissions
of sensors from the neighboring cluster C5 (shaded in blue)
were occasionally received by C’s cluster head. In large-scale
deployments, frequency division amongst different clusters is
easily possible in our approach, but due to the sparse channel
utilization not applied here. The LQI curves show that link
qualities were naturally varying and, moreover, also decreasing
during the specific month visualized in the subfigure. The
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Fig. 3. Exemplary time series of different information gathered in-situ by the first agricultural deployment (JKI 1).

reason for the latter observation is presumably the crop growth.
An analysis of this interesting relationship will be part of our
future work.

V. CONCLUSION

In this paper, we presented a holistic [oT-based agricultural
monitoring system. The main component of this system is
an in-situ WSN that is tailored for the collection of sensor
information that is of special interest for Smart Farming. The
focus of the sensor network is on the continuous assessment
of the LAI that is relevant for a precise monitoring of crop
growth processes. Using an MQTT-based IoT infrastructure
and PLMN connectivity, this sensor network is connected to
a central server. The server is responsible for data persistence,
analytics, and also for visualization that can be used as
decision support for farmers. As future work, we plan to
integrate additional types of environmental sensors into our
system to enrich the monitoring range. This could allow a
wider analysis, further improve decision support, and enable
additional agricultural insights and applications.
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