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Abstract

A precise and fine-grained in-situ monitoring of bio-physical crop parameters is1

crucial for the efficiency and sustainability in modern agriculture. The leaf area2

index (LAI) is an important key parameter, which allows to derive vital crop3

information. As it serves as a valuable indicator for yield-limiting processes,4

it contributes to situational awareness ranging from agricultural optimization5

to global economy. This paper presents a feasible, robust, and low-cost modi-6

fication of commercial off-the-shelf photosynthetically active radiation sensors,7

which significantly enhances the potential of Wireless Sensor Network (WSN)8

technology for the non-destructive in-situ LAI assessment. In order to minimize9

environmental influences such as direct solar radiation and scattering effects,10

we upgrade such a sensor with a specific diffuser combined with an appropriate11

optical band-pass filter. We validate our approach in various field campaigns,12

analyze the accuracy of bio-physical crop characteristics derived from WSN13

data, and evaluate the robustness of our sensor modification.14
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1. Introduction15

The Climate change and the increasing world population pose serious chal-16

lenges to the primary economic sector as a whole and, in particular, to agri-17

culture. Crop types, fertilization, irrigation, and crop protection have to be18

adapted to changing conditions. An earlier and more precise situational aware-19

ness of the status of agricultural fields is crucial for agricultural management20

and could, moreover, improve the prediction of yield rates. For the realization of21

a spatial fine-grained and timely situational awareness, there is a high demand22

for in-situ exploration of bio-physical and bio-chemical crop characteristics by23

advanced sensor technology.24

In this context, the leaf area index (LAI) is one of the most important bio-25

physical plant parameters and an indispensable factor in climatological, me-26

teorological, ecological, and agricultural modeling. (Asner et al., 2003). It is27

a valuable indicator and an integrative measure for the photosynthetic perfor-28

mance of plants. Since the LAI provides important information for yield models,29

it also serves as an indicator for yield-reducing processes caused by diseases or30

mismanagement (Carter, 1994; Boegh et al., 2002). For flat-leaf vegetation,31

Jonckheere et al. (2004) define the LAI as the ratio of the on-sided foliage area32

to the ground surface area (m2/m2).33

In the recent years, various methods for the LAI assessment have been de-34

veloped. The destructive assessment of LAI usually provides the most precise35

results, but is time-consuming, expensive, and, therefore, often limited to small36

areas (Bréda, 2003; Jonckheere et al., 2004). Diverse methods of non-destructive37

(also referred to as indirect) LAI assessment exist. On the one hand, the LAI can38

be estimated in-situ. Jonckheere et al. (2004) and Weiss et al. (2004) provide a39

comprehensive survey on common in-situ methodologies. An intercomparison of40

these methods comprising digital hemispherical photography (DHP) (e.g., Ryu41

et al., 2012; Francone et al., 2014) and specific handheld instruments, which42

measure the solar transmittance of plant canopy (gap fraction analysis) (e.g.,43

AccuPAR, SunScan, or LAI-2200) is given by Wilhelm et al. (2000) and Gar-44
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rigues et al. (2008). On the other hand, the LAI assessment derived from remote45

sensing images (airborne or satellite) represents an established non-destructive46

alternative (e.g., Boegh et al., 2002; Jarmer, 2013). However, common draw-47

backs of all assessment methods are their relatively low temporal and/or spatial48

resolution as well as the required (monetary) effort.49

Wireless Sensor Networks (WSNs) comprise a large number of small, low-50

cost, and low-power sensor devices wirelessly interconnected in a self-organizing51

manner (Akyildiz et al., 2002) The primary task of each individual device52

within such a network is environmental sensing of physically measurable pa-53

rameters, e.g., temperature, humidity, or ambient light. Beyond this data ac-54

quisition, the device is responsible for data transmission and forwarding to a55

central base station, possibly connected to the Internet. As WSNs are designed56

for large-scale and long-term deployments, sensor devices are highly resource-57

constrained (Anastasi et al., 2009) and, thus, have limited sensing accuracy.58

However, this limitation is compensated by the large number of collaborating59

devices, which are able to continuously provide sensor information at high tem-60

poral as well as spatial resolution. Hence, WSNs are tailored for in-situ monitor-61

ing of crop parameters as has been realized by research in the context of smart62

farming since one decade, cf. Langendoen et al. (2006). A promising progress63

has already been made in this area (e.g., Yuan et al., 2009; Bauer et al., 2014;64

Qu et al., 2014b). Eventually, WSNs have the potential to reduce time and labor65

costs of conventional in-situ acquisition and to beneficially assist the validation66

of parameter maps derived from remote sensing data.67

In this paper, we continue our previous approach (Bauer et al., 2014) of68

non-destructive in-situ LAI assessment. We present a novel low-cost sensor69

modification which significantly enhances the investigated potential in terms of70

accuracy and robustness. Moreover, we evaluate the benefit of our approach71

in various field campaigns. At the same time, we turn our attention to its72

feasibility in practice. The core contributions of this paper are:73
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• the design of a novel low-cost sensor modification,74

• six extensive field campaigns including comparative analyses, and75

• an evaluation showing the impact of our approach.76

2. Related Work77

First preliminary experiences gained with an in-situ WSN deployment in78

the area of precision agriculture are shared by Langendoen et al. (2006). The79

authors report many engineering difficulties of large-scale and long-term deploy-80

ments and create a foundation for future WSN research. Pioneer research in the81

special domain of non-destructive LAI assessment based on WSN technology is82

presented by Yuan et al. (2009). The authors propose an iterative scheme to83

deploy sensors into farmland and apply statistical filters to the raw sensory data84

in order to cope with variations of light reflection and refraction. Nonetheless,85

they do not take advantage of any optical filter or diffuser. A continuous LAI86

monitoring WSN is proposed by Shimojo et al. (2013) and demonstrated us-87

ing commercial off-the-shelf (COTS) sensor nodes in a tomato greenhouse. The88

authors emphasize that diffuse light conditions are crucial for the LAI assess-89

ment based on gap fraction analysis. Hence, a diffusing hemispherical plastic90

cover is used on top of each sensor. LAINet (Qu et al., 2014b) represents an-91

other holistic WSN for agricultural LAI monitoring. Recently, Qu et al. (2014a)92

focused on the in-situ assessment of the clumping index, which is closely re-93

lated to the LAI. Moreover, the authors presented details of MLAOS, a custom94

multi-point optical sensor system, which provides the basis of LAINet. MLOAS95

uses optical diffusers and band-pass filters in order to minimize the influence of96

scatter light.97

In our previous work (Bauer et al., 2014), we investigated the LAI accuracy98

achieved by a COTS sensor platform by conducting a direct comparison of WSN99

results and values obtained by conventional standard instrumentation, namely100

the LAI-2200 (LI-COR Inc., USA). Moreover, we suggest the view pipe concept101
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as simple modification of the optical sensor, which is shown to significantly102

improve the correlation between both devices and, thus, the potential of WSNs.103

However, this approach requires multiple sensors with multiple view pipes, which104

hinders the use of a COTS sensor platform and its practicability. Following our105

previous approach, our general goal is a feasible low-cost sensing system with106

sufficient accuracy.107

In this paper, we reuse the chosen sensor platform. Again, we validate the108

achieved accuracy by a correlation analysis with the LAI-2200 (LI-COR, 2011)109

as also done by Qu et al. (2014b). With regard to the sensor unit, MLAOS (Qu110

et al., 2014a) is most related with our approach. However, we consider a different111

range in the solar spectrum and achieve feasible results with a single COTS112

sensor.113

3. Background114

3.1. Theoretical Background115

In the visible (VIS) region of the electromagnetic spectrum (390–770 nm),116

spectral reflectance and transmittance of vegetation are dominated by the im-117

pact of pigments, e.g., chlorophyll and carotenoids (Gitelson et al., 2002). Due118

to the fact that green vegetation strongly absorb the energy of radiation in the119

range of blue (400–500 nm) and red light (600–700 nm) in order to carry out120

photosynthesis, reflectance and transmittance in these ranges are on a very low121

level, whereas being higher in the in the green domain (500–600 nm). This effect122

is known as the so-called green peak. In the near infrared (NIR) region (700–123

1400 nm), resulting from the cell structure, reflectance and transmittance first124

highly increase, while then remain on a high level which greatly reduces the NIR125

absorption (Gausman and Allen, 1973). Such a typical vegetation reflectance126

spectrum is visualized in Figure 1 which shows an exemplary spectrum for maize127

(Zea mays L.) measured in-situ with an ASD FieldSpec III (ASD Inc., USA)128

spectroradiometer as well as a wheat (Triticum aestivum L.) spectrum acquired129

by a SVC 1024i (Spectra Vista Corporation, USA) spectroradiometer.130
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Figure 1: Typical reflectance spectrum curves of crops (maize and wheat) in the VIS and

NIR region of solar radiation gathered by in-situ spectroradiometer measurements.

The properties of light transmittance of plants in the VIS spectrum is lever-131

aged by the indirect LAI determination which is based on the quantitative in-132

teraction between solar radiation and plant canopy, cf. Jonckheere et al. (2004).133

The Monsi-Saeki model (Monsi and Saeki, 2005), as used by Yuan et al. (2009),134

Shimojo et al. (2013), and Bauer et al. (2014), applies the well-known Beer-135

Lambert law for assessing the LAI (L). It results in136

L = −
1

C
ln

(

B

A

)

, (1)

where A is the light intensity observed above-canopy, B the corresponding inten-137

sity below-canopy, and the cultivar-specific term C. This term is the so-called138

extinction coefficient. It is given by the quantity of the specific light absorption139

property of plant’s foliage and depends on various factors such as the leaf ori-140

entation angle. Moreover, the solar altitude has an significant impact on this141

coefficient. Please refer to Monsi and Saeki (2005) or Jonckheere et al. (2004)142

for further details.143

The ratio of B to A represents the transmittance, which is gathered by144

standard optical instruments. These devices usually focus on a special spectral145

range within the VIS region where reflectance and transmittance of foliage is146

relatively low, e.g., in the range of blue light, cf. Figure 1. By doing so, the147
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maximum contrast between leaf and sky is achieved (Jonckheere et al., 2004).148

However, it is recommended to measure the light intensity under fully diffused149

sky conditions to cope with scattered radiation from leaf surfaces. Indeed, there150

exist more sophisticated approaches to remove the scattered radiation effect151

and provide an opportunity for LAI measurements even under sunny weather152

conditions, e.g., Kobayashi et al. (2013), as well as practical approaches tackling153

the challenge of scattered radiation, e.g., Qu et al. (2014a).154

3.2. Standard Instrumentation155

Reliable ground truth LAI values are very difficult to obtain. Only destruc-156

tive measurements provide high accuracy and precision, but are time-consuming157

and cost-intensive and, thus, sparsely conducted. Nonetheless, depending on158

the agricultural application, in-situ non-destructive solutions may achieve a suf-159

ficient accuracy. The LAI-2200 instrument, for instance, is one of the standard160

measuring devices for the non-destructive LAI assessment and widely used in161

agricultural research. We hence use the LAI-2200 in order to validate the LAI162

results gathered by WSN devices.163

The LAI-2200 instrument consists of a measurement wand with a fish-eye164

optical sensor and a handheld control unit. The sensor’s field of view is divided165

into five rings. For each ring i, a usual measurement of the LAI-2200 consists of166

a number (Nobs) of above (Aij) and below canopy readings (Bij). The former167

measure the total incoming light intensity above the canopy and the latter the168

residual incoming light which is neither reflected nor absorbed by the canopy.169

Thereby, according to LI-COR (2011), the LAI (L) can be approximated with170

L = 2

5
∑

i=1

KiWi , with Ki =
1

Nobs

Nobs
∑

j=1

−ln
(

Bij

Aij

)

Si
. (2)

The factors Wi and Si are specific weightings for the individual rings. For more171

details, please refer to LI-COR (2011).172
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4. Measurement Architecture173

The practical meaning of Equations 1 and 2 in Section 3 is that a pair of174

optical sensors (one above and one below the canopy) allow the LAI assessment.175

Hence, our long-term vision is a continuous WSN deployment for in-situ crop176

monitoring comprising a few sensors above the canopy as reference stations and177

plenty of sensors below the foliage, similar to the implementation of LAINet (Qu178

et al., 2014b). However, as a start of our research, our initial goal is a COTS179

sensor enhancement with sufficient accuracy and robustness concerning LAI180

estimation in practice. Therefore, we use the same architecture as presented by181

Bauer et al. (2014), which is briefly described in the remainder of this section.182

For the validation of our approach and the evaluation of the achieved ac-183

curacy, we perform a comparative analysis with the LAI-2200. Regarding the184

correlation between both devices, their similar positioning and orientation is a185

crucial requirement for reliable and comparable results. Hence, in order to ex-186

clude such potential error sources and inaccuracies resulting from instrumental187

errors when using a pair of sensor nodes, we limit our measurement setup to188

a single node, directly mounted onto the measurement wand of the LAI-2200.189

Thus, we use the same sensor node for above and below data acquisition, simul-190

taneously to the corresponding acquisition of the LAI-2200. Nevertheless, the191

gathered sensor data still is transmitted to a fully-equipped device as central192

instance for LAI computation, logging, and visualization. To this end, we use193

the smartphone application introduced by Bauer et al. (2014).194

4.1. Hardware Components195

After various tests with diverse IEEE 802.15.4 (Baronti et al., 2007; IEEE,196

2011) compliant COTS sensor platforms regarding their capabilities for the LAI197

assessment based on gap fraction analysis, we came to the conclusion that the198

TelosB1 sensor platform (Memsic, USA), which is also used by Shimojo et al.199

1http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
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(2013), is greatly suited for our purpose (Bauer et al., 2014). Among its en-200

vironmental sensors (temperature, humidity, and light), it features a photosyn-201

thetically active radiation (PAR) sensor (Hamamatsu S1087), which covers the202

desired spectral response rage from 320 to 730 nm with a peak sensitivity at a203

wavelength of 560 nm. In particular under natural light conditions, we evaluated204

this sensor as highly applicable for our purpose.205

4.2. Software Components206

The software framework consists of a data acquisition application running207

on the TelosB platform and an LAI determination and visualization application208

on the fully-equipped device, e.g., a smartphone. We implemented the data209

acquisition application using TinyOS 2.1.22(Levis et al., 2005), a widespread210

open source operating system for low-power wireless devices, with a reasonable211

memory footprint remaining enough memory for time synchronization (Römer212

et al., 2005), data aggregation (Fasolo et al., 2007), routing algorithms (Akkaya213

and Younis, 2005), and energy optimizations (Anastasi et al., 2009), which are214

currently not yet integrated in our application. Since we do not only gather the215

VIS light intensity perceived by the PAR sensor, but also monitor the temper-216

ature and humidity for future purposes, we achieve a sampling rate of roughly217

3 Hz. Details can be found in Bauer et al. (2014).218

The LAI computation is performed by a fully-equipped device because the219

data has to be filtered and fused, in particular in case of distributed sensors (as220

in the intended WSN deployment). Thus, the readings of each individual sensor221

are transmitted to that device. We combine (temporarily buffered) readings222

in a batch of 17 samples per packet in order to utilize the maximum packet223

size of IEEE 802.15.4. These packets are broadcasted with a rate of roughly224

10 packets/min. Indeed, a more sophisticated, sparse, and energy-efficient sensor225

data transmission would be required for a long-term deployment which is part226

of our future work.227

2http://www.tinyos.net
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The central data sink application that receives these broadcasts averages the228

readings of each individual PAR sensor. In order to mitigate varying small-scale229

environmental noise, in our field campaigns, we take the mean of all 51 sensor230

samples included in three consecutive data packets (denoted by A and B). Using231

the means, the transmittance is determined. Finally, the LAIs of individual232

pairs of sensors are estimated according to Equation 2 (Section 3.2). As it is233

not possible to differentiate the angle of incoming light with a single COTS234

sensor, we cannot divide the field of view in rings as done by the LAI device of235

LI-COR. Instead, we rely on an averaged transmittance which results in:236

L = 2

5
∑

i=1

KiWi with Ki =

−ln
(

B
A

)

Si
. (3)

Adopting the weighting factors from LI-COR (2011), the LAI can be expressed237

with:238

L = −ω · ln

(

B

A

)

, (4)

where ω is roughly 1.2401 and contains the extinction coefficient mentioned239

in Section 3.1. Note that in our current measurement setup, which directly240

compares manually measured LAIs, we do not face large-scale noise, e.g., effected241

by wind or rain. Thus, more complex statistical filters as applied by Yuan et al.242

(2009) are not required here.243

5. Design of a Sensor Enhancement244

Bauer et al. (2014) introduced the view pipe approach, a simple, yet effective245

modification of the sensor’s field of view, and demonstrated promising results.246

The idea is to imitate the individual rings in the visibility field of the LAI-2200247

instrument by adjusting the COTS sensor’s field of view in a similar manner.248

Using a short pipe mounted onto the sensor, its lower (i.e., more horizontal)249

field of view is restricted. However, concerning its feasibility, the view pipe250

approach has an inherent drawback: In order to entirely map the five rings of251
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ever, based on previous experiences, the LAI accuracy (validated by comparative259

LAI-2200 results) is significantly impaired, if the sensor is not restricted some-260

how. Thus, we choose a restriction on a spectral level according to the black261

body assumption (LI-COR, 2011), which assumes a black foliage compared to262

the sky. This is achieved by an optical band-pass filter which rejects any incom-263

ing radiation with certain wavelengths in order to increase the contrast between264

foliage and sky and to mitigate scattering effects. Nonetheless, an additional265

restriction by an opaque cover that avoids direct sunlight from the zenith angle266

might be beneficial. Hence, we add an optional view cover at the top of the267

diffuser cap. This cover is designed to fade out the zenith visibility field (0268

– 10 °) corresponding to the first ring of the LAI-2200 whose influence is also269

reduced to roughly 4 % by a small weighting factor, cf. (LI-COR, 2011). The270

overall concept of our new approach is depicted in Figure 2(a) and its practical271

realization is shown in Figure 2(b).272

For the above mentioned spectral restriction, it is advisable to fade out the273

green peak in the reflectance spectrum of vegetation, cf. Section 3.1 and Figure 1.274

That could be easily realized by optical band-pass filters in the blue or red range275

of visible light. In contrast to Qu et al. (2014a), we decided to utilize a (low-276

cost) dark blue 435 nm band-pass filter (Baader Planetarium, Germany). The277

reason of this decision is that both reflectance and transmittance of vegetation278

in the blue spectrum is slightly lower than in the red spectrum, as exemplar-279

ily illustrated in Figure 3, that again visualizes the two reflectance spectrums280

from Figure 1 (maize and wheat), but in the specific spectral response range281

of the Hamamatsu PAR sensor. This characteristic of very low transmittance282

in the blue spectrum is advantageous concerning the black body assumption.283

Moreover, using the blue spectral range has the additional advantage that this284

region in the reflectance spectrum is only slightly changed under stress condi-285

tions, whereas red reflectance and transmittance is known to typically increase286

significantly (Slonecker, 2012). The LAI assessment based on a red band-pass287

filter might thus be prone to underestimation.288
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Figure 3: Spectral analysis of the transmittance (y1-axis) of the chosen diffuser with and

without band-pass filtering within the spectral response range of the Hamamatsu S1087 sensor.

Besides, reflectance spectrum curves of crops (maize and wheat) are shown on the y2-axis as

measured in the field (solid line) and as perceived by the sensor after being filtered (dashed

line).

Using the SVC1024i (Spectra Vista Corporation, USA) spectroradiometer,289

we tested different diffusers in a laboratory environment and measured their290

transmittance as well as their transmittance in combination with the chosen291

band-pass filter. A detailed presentation of results are out of scope of this292

paper. However, a visualization of the properties of the selected diffuser are293

included in Figure 3. As the transmittance of the diffuser is relatively constant294

in the total response range of the PAR sensor and the diffuser does not decrease295

incoming radiation by more than roughly a third, it is suitable for LAI esti-296

mation. In addition, combining the diffuser with a dark blue band-pass filter,297

exactly the range of interest is passed. Moreover, considering the approxima-298

tion of both plant reflectance curves perceived by the sensor after being filtered299

(dashed lines), the green peak (≈550 nm) is eliminated as intended. Finally, the300

transmittance and reflectance of vegetation is less than 10 %, thus, offering a301

high contrast to the sky.302

13



6. Evaluation in Field Trials303

The goal of the field trials comprising six measurement campaigns in a maize304

field (Zea mays L.) is to investigate the sensing accuracy of COTS sensor tech-305

nology (TelosB) enhanced by the presented view cap concept. By a comparative306

analysis with the results simultaneously measured by the LAI-2200 device, we307

validate this accuracy and emphasize the potential of WSNs for a large-scale and308

long-term agriculture deployment. We hope to achieve a similar accuracy and a309

strong linear correlation between the LAI estimates derived from both devices.310

Although the field measurements are exemplarily carried out in maize fields, we311

are convinced that our sensing architecture is applicable to other flat-leaf crop312

types. A validation of this assumption with various field campaigns in different313

crop types is planned to be part of our future work.314

6.1. Study Area and Measurement Details315

The maize field which was investigated during the growing seasons 2014 and316

2015 has a size of 3.5 ha and is located near the University of Osnabrück in the317

north-western part of Germany. The mean annual precipitation of the area is318

about 700 mm and the mean annual temperature between 8 and 9 °C.319

Four maize measurement campaigns were carried out on July 23rd, Aug. 6th,320

Aug. 21st, and Sept. 25th in 2014, two additional campaigns on Aug. 12th and321

Aug. 20th in 2015. In every campaign, the LAI of 25–65 plots with seasonal322

variations and different growth characteristics were measured to cover a wide323

range of LAI values. In order to guarantee diffuse light conditions, which are a324

basic prerequisite of the LAI-2200 device, all measurements were only conducted325

either in the dawn between 6 am and 9 am (0 °≤ solar zenith angle≤ 15 °) or326

between 9 am and 3 pm on days with a stable cloud cover (15 °≤ solar zenith327

angle≤ 55 °).328

In every campaign, the TelosB device was installed directly on the LAI-2200’s329

measurement wand, close to the fish-eye sensor. It simultaneously samples in-330

coming radiation as described in Section 4.2 and periodically transfers its sensor331

data to the fully-equipped device, which finally determines the LAI.332
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reference in a first in-situ validation experiment (Campaign 1).

6.2. Results333

As an initial proof of concept, we validated the basic setup (i.e., a sensor334

enhanced by diffuser and optical band-pass filter) in the first campaign. The335

comparative analysis of agreement between our setup and the LAI-2200 is shown336

in Figure 4 using a scatter plot. One can observe a clear linear relationship with337

a coefficient of determination (r2) of 0.81 as well as a low root-mean-square338

error (RMSE) of 0.24. This initial result may seem similar to results of the339

view pipe approach proposed by Bauer et al. (2014). However, the latter results340

did not take the entire LAI-2200 visibility field into account, but only ring 1341

and 2 (hereinafter denoted as LAI23). Thus, the quality of the new approach342

is much more promising. Moreover, by adopting the weighting factors and343

the implicit extinction coefficient from the computation formulas of LI-COR344

(2011) (cf. Section 4.2), the LAI domains of both devices agree surprisingly345

well as the linear regression line is nearly overlapping the 1:1 line (dashed).346

Nevertheless, since the number of samples taken in this first campaign (n= 29)347

are insufficient to draw a sound conclusion, additional campaigns are required.348

After the proof of our concept, we take a step backwards and quantitatively349

compare results from our previous concept (view pipes) with our new approach.350

Furthermore, we evaluate the impact of using an optical filter. Therefore, we351
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Figure 5: Measurement setup used for the comparative analysis of indirect LAI estimation

using WSN devices with different approaches (view pipe and view cap concept (w and w/o

view cover)) versus the conventional LAI-2200 methodology.

mounted TelosBs with different sensor modifications onto the LAI-2200 wand,352

as exemplarily illustrated in Figure 5. Although we might slightly loose prox-353

imity between the mounted sensors and the reference one, we thereby are able354

to perform all measurements simultaneously ensuring a spatiotemporal compa-355

rability.356

The results are depicted in Figure 6. Both subfigures (a) and (b) concretize357

the weakness of the view pipe approach: Using a single sensor and a view pipe358

that limits its visibility according to the first two LAI-2200 rings, it is only359

possible to achieve an acceptable correlation (r2 = 0.67, Figure 6(a)) regarding360

the corresponding LAI23 value (i.e., only ring 1 and 2 are used in the LAI-2200361

processing). Otherwise, the correlation is further decreased, represented by the362

lower coefficient of determination (r2 = 0.54, Figure 6(b)).363

Concerning our new approach, we investigated the impact of an optical filter.364

Figure 6(c) shows the poor performance (r2 = 0.14, RMSE= 0.57) of the TelosB365

PAR sensor, if only a diffuser is used, but the perceived solar radiation is not366

filtered. In contrast, using the same setup with an optical filter integrated in the367

diffuser cap, we observe a significant increase of correlation with the reference368

device (r2 = 0.83, RMSE= 0.26, Figure 6(d)). Thus, for the sensor’s potential369

and the accuracy of our approach, the optical band-pass filter is an extremely370

important component of our architecture.371
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(a) View pipe vs. LAI23.
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(b) View pipe.
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(c) Diffuser cap.
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Figure 6: Comparison of LAI estimates using different modifications of TelosB sensors and

LAI-2200 as reference (Campaign 2). LAI23 in (a) represents the LAI-2200 LAI estimate that

corresponds to the visibility field of the view pipe (rings 3–5 are blocked in processing).

Besides the accuracy, the robustness of a measurement architecture against372

environmental influences is a relevant criteria for the potential of unattended373

long-term WSNs. Amongst others, the influence of direct sunlight is a crucial374

factor regarding the robustness and also a well-known source of error in the375

LAI-2200 architecture, which is applicable only at sunrise, sunset, or on cloudy376

days (LI-COR, 2011; Kobayashi et al., 2013). In order to evaluate the robustness377

of our approach with regard to direct sunlight, we took a closer look at the light378

intensity perceived by all modified sensors used in the second campaign (i.e.,379
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Figure 7: Intensity and variance of PAR measurements of different sensors gathered above

canopy level in the second campaign. Both, the sequence of a sensor with a diffuser and in

particular the sequence of a sensor with the view cap, show acceptable stability over time in

all three phases, whereas the stability of the view pipe approach as well as the stability of the

LAI-2200 (ring 4 and ring 5) suffer from direct radiation.

view pipe, diffuser cap, and view cap) during each above canopy measurement.380

The sequences of the gathered intensities of different sensors and also of each381

individual ring of the LAI-2200 instrument are shown in Figure 7.382

Indeed, the sensitivity of individual sensors generally differ as expected be-383

cause of different setups which absorb incoming light in a different manner384

and/or because of individual fields of view. Note that each measurement sam-385

ple of the modified sensors represents the mean of 51 sensor readings (cf.A in386

Section 4.2). These readings are visualized by confidence intervals in the figure,387

but hardly distinguishable due to negligible variances.388

There were three different phases: a dawn phase (samples 1–40) with ideal389

environmental conditions, a stable cloud cover phase (samples 41–59) with ac-390

ceptable conditions, and a phase with sunny conditions (samples 60–79) baring391

the risk of direct radiation. Given stable environmental conditions, the se-392

quences of samples of each sensor are assumed to be stable as well. Hence,393
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(a) View cap without cover.
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Figure 8: Comparison of LAI estimates using enhanced TelosB sensors and LAI-2200 as

reference (Campaign 3 and 4).

during the first phase, a strictly monotonic increase of intensity sequence is394

expected due to the sunrise, whereas the sequences in the latter phases are ex-395

pected to result in a nearly steady state. However, the evaluation confirms that396

this expectation could not be achieved by conventional approaches. Figure 7397

emphasizes the high variance in the intensity sequences of the view pipe setup398

after the first phase as well as extreme outliers recorded by the LAI-2200 sensor,399

which is inoperative in direct sunlight (third phase) as predicted above. For this400

reason, the values measured in the third phase were excluded from the compar-401

ative analysis (cf. Figure 6). On the other hand, Figure 7 demonstrates that402

the diffuser approach tackles the challenge of direct sunlight since the diffuser403

cap sequence shows a smooth characteristic. As the variance only slightly in-404

creases when the diffuser is combined with the band-pass filter, our novel view405

cap approach enables the robustness required for an unattended deployment.406

Finally, the benefit of the optional view cover intended to avoid potential407

inaccuracies by direct sunlight is investigated in Campaign 3 and 4. Figure 8408

shows the quality of the setup so far (a) and of the setup extended by the409

opaque view cover (b). In both cases, there is a substantial correlation with the410

reference device. However, the view cover is identified to result only in a minor411
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Figure 9: Comparison of the summarized LAI estimates of TelosB with view cap sensor

enhancement and LAI-2200 in all maize campaigns.

improvement of the investigated correlation (r2 = 0.94 to r2 = 0.96). Though,412

by relying on the LAI-2200 comparison only and by neglecting more reliable413

destructive measurements, a general conclusion is hardly possible. Nevertheless,414

the cover does not seem to have a negative impact on the correlation on the other415

side. This result is very beneficial for the long-term unattended deployment in416

practice because dirt or dust particles might settle down on top of the diffuser417

cap and are expected to have a similar negligible impact.418

6.3. Discussion419

In conclusion, the estimates of both devices measured in all six field cam-420

paigns are compared in an overall scatter plot, cf. Figure 9. Note that a rea-421

sonable campaign-based clustering of estimates could not be observed since we422

considered different growth characteristics in each campaign and, thus, covered423

a wide range of LAI values each time.424
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Table 1: Performance of related approaches

Approach Technique Species Result (r2) Reference

Ryu et al. (2012) DHP trees 0.94 LAI-2000

Confalonieri et al. (2013) DHP rice 0.97 destructive

Francone et al. (2014) DHP grass 0.86 AccuPAR

maize 0.92 AccuPAR

reed 0.88 AccuPAR

Qu et al. (2014b) WSN maize 0.27–0.97 LAI-2000

Bauer et al. (2014) WSN shrubs 0.85–0.90 LAI-2200

Figure 9 confirms the strong agreement of our approach with the reference425

instrument (r2 = 0.88, RMSE= 0.28) and, thus, its appropriate accuracy. More-426

over, due to the extensive number of measured LAI values (n= 230) under dif-427

ferent seasonal and environmental influences as well as in various phenological428

stages, its robustness is implicitly demonstrated.429

With regard to the related work, this strong and robust linear correlation430

can compete with results obtained by state-of-the-art approaches, which are ex-431

emplarily itemized in Table 1. The results generally are based on fewer measure-432

ment samples (n≤ 30) and, thus, do not provide information about their robust-433

ness. In contrast to these approaches, our novel sensor enhancement has the434

advantage of being simpler, yet more effective and cost-efficient. Compared to435

DHP approaches, no complex data processing is required, which demands more436

powerful and energy-consuming devices. On the other hand, no custom array437

of multiple sensors is necessitated as by related WSN approaches. Hence, our438

sensor enhancement increases the feasibility of low-cost and large-scale WSNs439

for the in-situ LAI assessment.440
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7. Conclusion441

This paper presented a novel sensor approach based on COTS technology442

that significantly enhances the potential of IEEE 802.15.4 WSNs for the in-situ443

assessment of LAI, which is one of the most important metrics for bio-physical444

crop characteristics. It was shown that our approach enables new opportunities445

in terms of feasibility and robustness. Moreover, a comparative analysis re-446

veals that substantial accuracy is achieved. Results are qualitatively comparable447

with state-of-the-art results by specific commercial instruments (e.g., AccuPAR,448

SunScan, and LAI-2200) and the complementary hemispherical photography ap-449

proach, but enabled by small, low-cost, and energy-efficient devices.450

In our future work, additional investigations in different crops are intended.451

For that purpose, we will systematically conduct destructive LAI measurements452

and occasionally process remote sensing data to widely validate our results.453

Furthermore, we plan to deploy a long-term WSN prototype enabling LAI ac-454

quisition with high spatiotemporal resolution.455
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