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Abstract

1 A precise and fine-grained in-situ monitoring of bio-physical crop parameters is
> crucial for the efficiency and sustainability in modern agriculture. The leaf area
s index (LAI) is an important key parameter, which allows to derive vital crop
+ information. As it serves as a valuable indicator for yield-limiting processes,
s it contributes to situational awareness ranging from agricultural optimization
s to global economy. This paper presents a feasible, robust, and low-cost modi-
» fication of commercial off-the-shelf photosynthetically active radiation sensors,
s which significantly enhances the potential of Wireless Sensor Network (WSN)
o technology for the non-destructive in-situ LATI assessment. In order to minimize
10 environmental influences such as direct solar radiation and scattering effects,
11 we upgrade such a sensor with a specific diffuser combined with an appropriate
12 optical band-pass filter. We validate our approach in various field campaigns,
13 analyze the accuracy of bio-physical crop characteristics derived from WSN
1a data, and evaluate the robustness of our sensor modification.
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1. Introduction

The Climate change and the increasing world population pose serious chal-
lenges to the primary economic sector as a whole and, in particular, to agri-
culture. Crop types, fertilization, irrigation, and crop protection have to be
adapted to changing conditions. An earlier and more precise situational aware-
ness of the status of agricultural fields is crucial for agricultural management
and could, moreover, improve the prediction of yield rates. For the realization of
a spatial fine-grained and timely situational awareness, there is a high demand
for in-situ exploration of bio-physical and bio-chemical crop characteristics by
advanced sensor technology.

In this context, the leaf area index (LAI) is one of the most important bio-
physical plant parameters and an indispensable factor in climatological, me-
teorological, ecological, and agricultural modeling. (Asner et al., 2003). It is
a valuable indicator and an integrative measure for the photosynthetic perfor-
mance of plants. Since the LAI provides important information for yield models,
it also serves as an indicator for yield-reducing processes caused by diseases or
mismanagement (Carter, 1994; Boegh et al., 2002). For flat-leaf vegetation,
Jonckheere et al. (2004) define the LAI as the ratio of the on-sided foliage area
to the ground surface area (m?/m?).

In the recent years, various methods for the LAI assessment have been de-
veloped. The destructive assessment of LAI usually provides the most precise
results, but is time-consuming, expensive, and, therefore, often limited to small
areas (Bréda, 2003; Jonckheere et al., 2004). Diverse methods of non-destructive
(also referred to as indirect) LAI assessment exist. On the one hand, the LAI can
be estimated in-situ. Jonckheere et al. (2004) and Weiss et al. (2004) provide a
comprehensive survey on common in-situ methodologies. An intercomparison of
these methods comprising digital hemispherical photography (DHP) (e.g., Ryu
et al., 2012; Francone et al., 2014) and specific handheld instruments, which
measure the solar transmittance of plant canopy (gap fraction analysis) (e.g.,

AccuPAR, SunScan, or LAI-2200) is given by Wilhelm et al. (2000) and Gar-
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rigues et al. (2008). On the other hand, the LAT assessment derived from remote
sensing images (airborne or satellite) represents an established non-destructive
alternative (e.g., Boegh et al., 2002; Jarmer, 2013). However, common draw-
backs of all assessment methods are their relatively low temporal and/or spatial
resolution as well as the required (monetary) effort.

Wireless Sensor Networks (WSNs) comprise a large number of small, low-
cost, and low-power sensor devices wirelessly interconnected in a self-organizing
manner (Akyildiz et al., 2002) The primary task of each individual device
within such a network is environmental sensing of physically measurable pa-
rameters, e.g., temperature, humidity, or ambient light. Beyond this data ac-
quisition, the device is responsible for data transmission and forwarding to a
central base station, possibly connected to the Internet. As WSNs are designed
for large-scale and long-term deployments, sensor devices are highly resource-
constrained (Anastasi et al., 2009) and, thus, have limited sensing accuracy.
However, this limitation is compensated by the large number of collaborating
devices, which are able to continuously provide sensor information at high tem-
poral as well as spatial resolution. Hence, WSNs are tailored for in-situ monitor-
ing of crop parameters as has been realized by research in the context of smart
farming since one decade, cf. Langendoen et al. (2006). A promising progress
has already been made in this area (e.g., Yuan et al., 2009; Bauer et al., 2014;
Qu et al., 2014b). Eventually, WSNs have the potential to reduce time and labor
costs of conventional in-situ acquisition and to beneficially assist the validation
of parameter maps derived from remote sensing data.

In this paper, we continue our previous approach (Bauer et al., 2014) of
non-destructive in-situ LAI assessment. We present a novel low-cost sensor
modification which significantly enhances the investigated potential in terms of
accuracy and robustness. Moreover, we evaluate the benefit of our approach
in various field campaigns. At the same time, we turn our attention to its

feasibility in practice. The core contributions of this paper are:
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e the design of a novel low-cost sensor modification,
e six extensive field campaigns including comparative analyses, and

e an evaluation showing the impact of our approach.

2. Related Work

First preliminary experiences gained with an in-situ WSN deployment in
the area of precision agriculture are shared by Langendoen et al. (2006). The
authors report many engineering difficulties of large-scale and long-term deploy-
ments and create a foundation for future WSN research. Pioneer research in the
special domain of non-destructive LAI assessment based on WSN technology is
presented by Yuan et al. (2009). The authors propose an iterative scheme to
deploy sensors into farmland and apply statistical filters to the raw sensory data
in order to cope with variations of light reflection and refraction. Nonetheless,
they do not take advantage of any optical filter or diffuser. A continuous LAI
monitoring WSN is proposed by Shimojo et al. (2013) and demonstrated us-
ing commercial off-the-shelf (COTS) sensor nodes in a tomato greenhouse. The
authors emphasize that diffuse light conditions are crucial for the LAI assess-
ment based on gap fraction analysis. Hence, a diffusing hemispherical plastic
cover is used on top of each sensor. LAINet (Qu et al., 2014b) represents an-
other holistic WSN for agricultural LAI monitoring. Recently, Qu et al. (2014a)
focused on the in-situ assessment of the clumping index, which is closely re-
lated to the LAI. Moreover, the authors presented details of MLAOS, a custom
multi-point optical sensor system, which provides the basis of LAINet. MLOAS
uses optical diffusers and band-pass filters in order to minimize the influence of
scatter light.

In our previous work (Bauer et al., 2014), we investigated the LAI accuracy
achieved by a COTS sensor platform by conducting a direct comparison of WSN
results and values obtained by conventional standard instrumentation, namely

the LAI-2200 (LI-COR Inc., USA). Moreover, we suggest the view pipe concept



as simple modification of the optical sensor, which is shown to significantly
improve the correlation between both devices and, thus, the potential of WSNs.
However, this approach requires multiple sensors with multiple view pipes, which
hinders the use of a COTS sensor platform and its practicability. Following our
previous approach, our general goal is a feasible low-cost sensing system with
sufficient accuracy.

In this paper, we reuse the chosen sensor platform. Again, we validate the
achieved accuracy by a correlation analysis with the LAI-2200 (LI-COR, 2011)
as also done by Qu et al. (2014b). With regard to the sensor unit, MLAOS (Qu
et al., 2014a) is most related with our approach. However, we consider a different
range in the solar spectrum and achieve feasible results with a single COTS

Sensor.

3. Background

8.1. Theoretical Background

In the visible (VIS) region of the electromagnetic spectrum (390-770 nm),
spectral reflectance and transmittance of vegetation are dominated by the im-
pact of pigments, e.g., chlorophyll and carotenoids (Gitelson et al., 2002). Due
to the fact that green vegetation strongly absorb the energy of radiation in the
range of blue (400-500nm) and red light (600-700nm) in order to carry out
photosynthesis, reflectance and transmittance in these ranges are on a very low
level, whereas being higher in the in the green domain (500-600 nm). This effect
is known as the so-called green peak. In the near infrared (NIR) region (700—
1400 nm), resulting from the cell structure, reflectance and transmittance first
highly increase, while then remain on a high level which greatly reduces the NIR
absorption (Gausman and Allen, 1973). Such a typical vegetation reflectance
spectrum is visualized in Figure 1 which shows an exemplary spectrum for maize
(Zea mays L.) measured in-situ with an ASD FieldSpec 11T (ASD Inc., USA)
spectroradiometer as well as a wheat ( Triticum aestivum L.) spectrum acquired

by a SVC 1024i (Spectra Vista Corporation, USA) spectroradiometer.
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Figure 1: Typical reflectance spectrum curves of crops (maize and wheat) in the VIS and

NIR region of solar radiation gathered by in-situ spectroradiometer measurements.

The properties of light transmittance of plants in the VIS spectrum is lever-
aged by the indirect LAI determination which is based on the quantitative in-
teraction between solar radiation and plant canopy, cf. Jonckheere et al. (2004).
The Monsi-Saeki model (Monsi and Saeki, 2005), as used by Yuan et al. (2009),
Shimojo et al. (2013), and Bauer et al. (2014), applies the well-known Beer-
Lambert law for assessing the LAI (L). It results in

) w

where A is the light intensity observed above-canopy, B the corresponding inten-
sity below-canopy, and the cultivar-specific term C. This term is the so-called
extinction coefficient. It is given by the quantity of the specific light absorption
property of plant’s foliage and depends on various factors such as the leaf ori-
entation angle. Moreover, the solar altitude has an significant impact on this
coefficient. Please refer to Monsi and Saeki (2005) or Jonckheere et al. (2004)
for further details.

The ratio of B to A represents the transmittance, which is gathered by
standard optical instruments. These devices usually focus on a special spectral
range within the VIS region where reflectance and transmittance of foliage is

relatively low, e.g., in the range of blue light, c¢f. Figure 1. By doing so, the
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maximum contrast between leaf and sky is achieved (Jonckheere et al., 2004).
However, it is recommended to measure the light intensity under fully diffused
sky conditions to cope with scattered radiation from leaf surfaces. Indeed, there
exist more sophisticated approaches to remove the scattered radiation effect
and provide an opportunity for LAI measurements even under sunny weather
conditions, e.g., Kobayashi et al. (2013), as well as practical approaches tackling

the challenge of scattered radiation, e.g., Qu et al. (2014a).

3.2. Standard Instrumentation

Reliable ground truth LAIT values are very difficult to obtain. Only destruc-
tive measurements provide high accuracy and precision, but are time-consuming
and cost-intensive and, thus, sparsely conducted. Nonetheless, depending on
the agricultural application, in-situ non-destructive solutions may achieve a suf-
ficient accuracy. The LAI-2200 instrument, for instance, is one of the standard
measuring devices for the non-destructive LAI assessment and widely used in
agricultural research. We hence use the LAI-2200 in order to validate the LAI
results gathered by WSN devices.

The LAI-2200 instrument consists of a measurement wand with a fish-eye
optical sensor and a handheld control unit. The sensor’s field of view is divided
into five rings. For each ring ¢, a usual measurement of the LAI-2200 consists of
a number (Nyps) of above (A;;) and below canopy readings (B;;). The former
measure the total incoming light intensity above the canopy and the latter the
residual incoming light which is neither reflected nor absorbed by the canopy.
Thereby, according to LI-COR, (2011), the LAI (L) can be approximated with

5

L=2) KW, with K; =

i=1

1
Nobs N Sl

ye (%) o

The factors W; and S; are specific weightings for the individual rings. For more

details, please refer to LI-COR (2011).
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4. Measurement Architecture

The practical meaning of Equations 1 and 2 in Section 3 is that a pair of
optical sensors (one above and one below the canopy) allow the LAI assessment.
Hence, our long-term vision is a continuous WSN deployment for in-situ crop
monitoring comprising a few sensors above the canopy as reference stations and
plenty of sensors below the foliage, similar to the implementation of LAINet (Qu
et al., 2014b). However, as a start of our research, our initial goal is a COTS
sensor enhancement with sufficient accuracy and robustness concerning LAI
estimation in practice. Therefore, we use the same architecture as presented by
Bauer et al. (2014), which is briefly described in the remainder of this section.

For the validation of our approach and the evaluation of the achieved ac-
curacy, we perform a comparative analysis with the LAI-2200. Regarding the
correlation between both devices, their similar positioning and orientation is a
crucial requirement for reliable and comparable results. Hence, in order to ex-
clude such potential error sources and inaccuracies resulting from instrumental
errors when using a pair of sensor nodes, we limit our measurement setup to
a single node, directly mounted onto the measurement wand of the LAI-2200.
Thus, we use the same sensor node for above and below data acquisition, simul-
taneously to the corresponding acquisition of the LAI-2200. Nevertheless, the
gathered sensor data still is transmitted to a fully-equipped device as central
instance for LAI computation, logging, and visualization. To this end, we use

the smartphone application introduced by Bauer et al. (2014).

4.1. Hardware Components

After various tests with diverse IEEE 802.15.4 (Baronti et al., 2007; IEEE,
2011) compliant COTS sensor platforms regarding their capabilities for the LAI
assessment based on gap fraction analysis, we came to the conclusion that the

TelosB! sensor platform (Memsic, USA), which is also used by Shimojo et al.

Ihttp://wuw.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf



(2013), is greatly suited for our purpose (Bauer et al., 2014). Among its en-
vironmental sensors (temperature, humidity, and light), it features a photosyn-
thetically active radiation (PAR) sensor (Hamamatsu S1087), which covers the
desired spectral response rage from 320 to 730 nm with a peak sensitivity at a
wavelength of 560 nm. In particular under natural light conditions, we evaluated

this sensor as highly applicable for our purpose.

4.2. Software Components

The software framework consists of a data acquisition application running
on the TelosB platform and an LAI determination and visualization application
on the fully-equipped device, e.g., a smartphone. We implemented the data
acquisition application using TinyOS 2.1.22(Levis et al., 2005), a widespread
open source operating system for low-power wireless devices, with a reasonable
memory footprint remaining enough memory for time synchronization (Romer
et al., 2005), data aggregation (Fasolo et al., 2007), routing algorithms (Akkaya
and Younis, 2005), and energy optimizations (Anastasi et al., 2009), which are
currently not yet integrated in our application. Since we do not only gather the
VIS light intensity perceived by the PAR sensor, but also monitor the temper-
ature and humidity for future purposes, we achieve a sampling rate of roughly
3 Hz. Details can be found in Bauer et al. (2014).

The LAI computation is performed by a fully-equipped device because the
data has to be filtered and fused, in particular in case of distributed sensors (as
in the intended WSN deployment). Thus, the readings of each individual sensor
are transmitted to that device. We combine (temporarily buffered) readings
in a batch of 17 samples per packet in order to utilize the maximum packet
size of IEEE 802.15.4. These packets are broadcasted with a rate of roughly
10 packets/min. Indeed, a more sophisticated, sparse, and energy-efficient sensor
data transmission would be required for a long-term deployment which is part

of our future work.

2http://www.tinyos.net



The central data sink application that receives these broadcasts averages the
readings of each individual PAR sensor. In order to mitigate varying small-scale
environmental noise, in our field campaigns, we take the mean of all 51 sensor
samples included in three consecutive data packets (denoted by A and B). Using
the means, the transmittance is determined. Finally, the LAIs of individual
pairs of sensors are estimated according to Equation 2 (Section 3.2). As it is
not possible to differentiate the angle of incoming light with a single COTS
sensor, we cannot divide the field of view in rings as done by the LAI device of

LI-COR. Instead, we rely on an averaged transmittance which results in:

)
L:2;KiWi with KFT.

>

3)

Adopting the weighting factors from LI-COR (2011), the LAI can be expressed
with:

— ’

where w is roughly 1.2401 and contains the extinction coefficient mentioned
in Section 3.1. Note that in our current measurement setup, which directly
compares manually measured LAITs, we do not face large-scale noise, e.g., effected
by wind or rain. Thus, more complex statistical filters as applied by Yuan et al.

(2009) are not required here.

5. Design of a Sensor Enhancement

Bauer et al. (2014) introduced the view pipe approach, a simple, yet effective
modification of the sensor’s field of view, and demonstrated promising results.
The idea is to imitate the individual rings in the visibility field of the LAI-2200
instrument by adjusting the COTS sensor’s field of view in a similar manner.
Using a short pipe mounted onto the sensor, its lower (i.e., more horizontal)
field of view is restricted. However, concerning its feasibility, the view pipe

approach has an inherent drawback: In order to entirely map the five rings of

10



252 the LAI-2200’s fish-eye sensor, five PAR sensors with corresponding view pipes
253 would be necessary. Moreover, view pipes only restrict the lower bound of the

264 VlSlblhty field.

Diffuser cap

I
Band-pass filter (435 nm) PAR sensor

(a) View cap concept: The diffusivity of incoming light is improved by an
adequate diffuser cap, the spectral response range is restricted by a band-pass
filter, and an optional view cover mitigates potential direct solar radiation

from the zenith angle.

(b) Practical realization of the view cap concept: TelosB sensor node with a dark-blue

band-pass filter (left) and an additional diffuser cap mounted on top of the filter (right).
Figure 2: Concept and realization of the sensor enhancement.
285 Due to this certain lack of feasibility, we reconsidered our previous approach
256 and take a different direction. In our novel setup, referred to as view cap ap-

257 proach, we take advantage of an optical diffuser in form of a hemispherical cap,

28 following the approaches of Shimojo et al. (2013) and Qu et al. (2014a). How-

11



ever, based on previous experiences, the LAT accuracy (validated by comparative
LAI-2200 results) is significantly impaired, if the sensor is not restricted some-
how. Thus, we choose a restriction on a spectral level according to the black
body assumption (LI-COR, 2011), which assumes a black foliage compared to
the sky. This is achieved by an optical band-pass filter which rejects any incom-
ing radiation with certain wavelengths in order to increase the contrast between
foliage and sky and to mitigate scattering effects. Nonetheless, an additional
restriction by an opaque cover that avoids direct sunlight from the zenith angle
might be beneficial. Hence, we add an optional view cover at the top of the
diffuser cap. This cover is designed to fade out the zenith visibility field (0
— 10°) corresponding to the first ring of the LAI-2200 whose influence is also
reduced to roughly 4% by a small weighting factor, cf. (LI-COR, 2011). The
overall concept of our new approach is depicted in Figure 2(a) and its practical
realization is shown in Figure 2(b).

For the above mentioned spectral restriction, it is advisable to fade out the
green peak in the reflectance spectrum of vegetation, cf. Section 3.1 and Figure 1.
That could be easily realized by optical band-pass filters in the blue or red range
of visible light. In contrast to Qu et al. (2014a), we decided to utilize a (low-
cost) dark blue 435 nm band-pass filter (Baader Planetarium, Germany). The
reason of this decision is that both reflectance and transmittance of vegetation
in the blue spectrum is slightly lower than in the red spectrum, as exemplar-
ily illustrated in Figure 3, that again visualizes the two reflectance spectrums
from Figure 1 (maize and wheat), but in the specific spectral response range
of the Hamamatsu PAR sensor. This characteristic of very low transmittance
in the blue spectrum is advantageous concerning the black body assumption.
Moreover, using the blue spectral range has the additional advantage that this
region in the reflectance spectrum is only slightly changed under stress condi-
tions, whereas red reflectance and transmittance is known to typically increase
significantly (Slonecker, 2012). The LAI assessment based on a red band-pass

filter might thus be prone to underestimation.

12
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Figure 3: Spectral analysis of the transmittance (yl-axis) of the chosen diffuser with and
without band-pass filtering within the spectral response range of the Hamamatsu S1087 sensor.
Besides, reflectance spectrum curves of crops (maize and wheat) are shown on the y2-axis as
measured in the field (solid line) and as perceived by the sensor after being filtered (dashed

line).

Using the SVC 1024i (Spectra Vista Corporation, USA) spectroradiometer,
we tested different diffusers in a laboratory environment and measured their
transmittance as well as their transmittance in combination with the chosen
band-pass filter. A detailed presentation of results are out of scope of this
paper. However, a visualization of the properties of the selected diffuser are
included in Figure 3. As the transmittance of the diffuser is relatively constant
in the total response range of the PAR sensor and the diffuser does not decrease
incoming radiation by more than roughly a third, it is suitable for LAI esti-
mation. In addition, combining the diffuser with a dark blue band-pass filter,
exactly the range of interest is passed. Moreover, considering the approxima-
tion of both plant reflectance curves perceived by the sensor after being filtered
(dashed lines), the green peak (=550 nm) is eliminated as intended. Finally, the
transmittance and reflectance of vegetation is less than 10 %, thus, offering a

high contrast to the sky.

13
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6. Evaluation in Field Trials

The goal of the field trials comprising six measurement campaigns in a maize
field (Zea mays L.) is to investigate the sensing accuracy of COTS sensor tech-
nology (TelosB) enhanced by the presented view cap concept. By a comparative
analysis with the results simultaneously measured by the LAI-2200 device, we
validate this accuracy and emphasize the potential of WSNs for a large-scale and
long-term agriculture deployment. We hope to achieve a similar accuracy and a
strong linear correlation between the LAT estimates derived from both devices.
Although the field measurements are exemplarily carried out in maize fields, we
are convinced that our sensing architecture is applicable to other flat-leaf crop
types. A validation of this assumption with various field campaigns in different

crop types is planned to be part of our future work.

6.1. Study Area and Measurement Details

The maize field which was investigated during the growing seasons 2014 and
2015 has a size of 3.5ha and is located near the University of Osnabriick in the
north-western part of Germany. The mean annual precipitation of the area is
about 700 mm and the mean annual temperature between 8 and 9 °C.

Four maize measurement campaigns were carried out on July 237¢, Aug. 6",
Aug. 21%, and Sept. 25" in 2014, two additional campaigns on Aug. 12! and
Aug. 20" in 2015. In every campaign, the LAI of 25-65 plots with seasonal
variations and different growth characteristics were measured to cover a wide
range of LAI values. In order to guarantee diffuse light conditions, which are a
basic prerequisite of the LAI-2200 device, all measurements were only conducted
either in the dawn between 6am and 9am (0°<solar zenith angle <15°) or
between 9am and 3pm on days with a stable cloud cover (15°<solar zenith
angle <55°).

In every campaign, the TelosB device was installed directly on the LAI-2200’s
measurement wand, close to the fish-eye sensor. It simultaneously samples in-
coming radiation as described in Section 4.2 and periodically transfers its sensor

data to the fully-equipped device, which finally determines the LAI.

14
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Figure 4: Comparison of LAI estimates by the enhanced TelosB sensor and LAI-2200 as

reference in a first in-situ validation experiment (Campaign 1).

6.2. Results

As an initial proof of concept, we validated the basic setup (i.e., a sensor
enhanced by diffuser and optical band-pass filter) in the first campaign. The
comparative analysis of agreement between our setup and the LAI-2200 is shown
in Figure 4 using a scatter plot. One can observe a clear linear relationship with
a coefficient of determination (r?) of 0.81 as well as a low root-mean-square
error (RMSE) of 0.24. This initial result may seem similar to results of the
view pipe approach proposed by Bauer et al. (2014). However, the latter results
did not take the entire LAI-2200 visibility field into account, but only ring 1
and 2 (hereinafter denoted as LAI23). Thus, the quality of the new approach
is much more promising. Moreover, by adopting the weighting factors and
the implicit extinction coefficient from the computation formulas of LI-COR
(2011) (cf. Section 4.2), the LAI domains of both devices agree surprisingly
well as the linear regression line is nearly overlapping the 1:1 line (dashed).
Nevertheless, since the number of samples taken in this first campaign (n=29)
are insufficient to draw a sound conclusion, additional campaigns are required.

After the proof of our concept, we take a step backwards and quantitatively
compare results from our previous concept (view pipes) with our new approach.

Furthermore, we evaluate the impact of using an optical filter. Therefore, we

15
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Figure 5: Measurement setup used for the comparative analysis of indirect LAI estimation
using WSN devices with different approaches (view pipe and view cap concept (w and w/o

view cover)) versus the conventional LAI-2200 methodology.

mounted TelosBs with different sensor modifications onto the LAI-2200 wand,
as exemplarily illustrated in Figure 5. Although we might slightly loose prox-
imity between the mounted sensors and the reference one, we thereby are able
to perform all measurements simultaneously ensuring a spatiotemporal compa-
rability.

The results are depicted in Figure 6. Both subfigures (a) and (b) concretize
the weakness of the view pipe approach: Using a single sensor and a view pipe
that limits its visibility according to the first two LAI-2200 rings, it is only
possible to achieve an acceptable correlation (r?=0.67, Figure 6(a)) regarding
the corresponding LAI23 value (i.e., only ring 1 and 2 are used in the LAI-2200
processing). Otherwise, the correlation is further decreased, represented by the
lower coefficient of determination (r? =0.54, Figure 6(b)).

Concerning our new approach, we investigated the impact of an optical filter.
Figure 6(c) shows the poor performance (r? =0.14, RMSE = 0.57) of the TelosB
PAR sensor, if only a diffuser is used, but the perceived solar radiation is not
filtered. In contrast, using the same setup with an optical filter integrated in the
diffuser cap, we observe a significant increase of correlation with the reference
device (r?=0.83, RMSE =0.26, Figure 6(d)). Thus, for the sensor’s potential
and the accuracy of our approach, the optical band-pass filter is an extremely

important component of our architecture.
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Figure 6: Comparison of LAI estimates using different modifications of TelosB sensors and
LAI-2200 as reference (Campaign 2). LAI23 in (a) represents the LAI-2200 LAI estimate that

corresponds to the visibility field of the view pipe (rings 3-5 are blocked in processing).

Besides the accuracy, the robustness of a measurement architecture against
environmental influences is a relevant criteria for the potential of unattended
long-term WSNs. Amongst others, the influence of direct sunlight is a crucial
factor regarding the robustness and also a well-known source of error in the
LAT-2200 architecture, which is applicable only at sunrise, sunset, or on cloudy
days (LI-COR, 2011; Kobayashi et al., 2013). In order to evaluate the robustness
of our approach with regard to direct sunlight, we took a closer look at the light

intensity perceived by all modified sensors used in the second campaign (i.e.,
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Figure 7: Intensity and variance of PAR measurements of different sensors gathered above
canopy level in the second campaign. Both, the sequence of a sensor with a diffuser and in
particular the sequence of a sensor with the view cap, show acceptable stability over time in
all three phases, whereas the stability of the view pipe approach as well as the stability of the
LAI-2200 (ring 4 and ring 5) suffer from direct radiation.

view pipe, diffuser cap, and view cap) during each above canopy measurement.
The sequences of the gathered intensities of different sensors and also of each
individual ring of the LAI-2200 instrument are shown in Figure 7.

Indeed, the sensitivity of individual sensors generally differ as expected be-
cause of different setups which absorb incoming light in a different manner
and/or because of individual fields of view. Note that each measurement sam-
ple of the modified sensors represents the mean of 51 sensor readings (cf. A in
Section 4.2). These readings are visualized by confidence intervals in the figure,
but hardly distinguishable due to negligible variances.

There were three different phases: a dawn phase (samples 1-40) with ideal
environmental conditions, a stable cloud cover phase (samples 41-59) with ac-
ceptable conditions, and a phase with sunny conditions (samples 60-79) baring
the risk of direct radiation. Given stable environmental conditions, the se-

quences of samples of each sensor are assumed to be stable as well. Hence,
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Figure 8: Comparison of LAI estimates using enhanced TelosB sensors and LAI-2200 as

reference (Campaign 3 and 4).

during the first phase, a strictly monotonic increase of intensity sequence is
expected due to the sunrise, whereas the sequences in the latter phases are ex-
pected to result in a nearly steady state. However, the evaluation confirms that
this expectation could not be achieved by conventional approaches. Figure 7
emphasizes the high variance in the intensity sequences of the view pipe setup
after the first phase as well as extreme outliers recorded by the LAI-2200 sensor,
which is inoperative in direct sunlight (third phase) as predicted above. For this
reason, the values measured in the third phase were excluded from the compar-
ative analysis (cf. Figure 6). On the other hand, Figure 7 demonstrates that
the diffuser approach tackles the challenge of direct sunlight since the diffuser
cap sequence shows a smooth characteristic. As the variance only slightly in-
creases when the diffuser is combined with the band-pass filter, our novel view
cap approach enables the robustness required for an unattended deployment.
Finally, the benefit of the optional view cover intended to avoid potential
inaccuracies by direct sunlight is investigated in Campaign 3 and 4. Figure 8
shows the quality of the setup so far (a) and of the setup extended by the
opaque view cover (b). In both cases, there is a substantial correlation with the

reference device. However, the view cover is identified to result only in a minor
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Figure 9: Comparison of the summarized LAI estimates of TelosB with view cap sensor

enhancement and LAI-2200 in all maize campaigns.

improvement of the investigated correlation (r?=0.94 to 72> =0.96). Though,
by relying on the LAI-2200 comparison only and by neglecting more reliable
destructive measurements, a general conclusion is hardly possible. Nevertheless,
the cover does not seem to have a negative impact on the correlation on the other
side. This result is very beneficial for the long-term unattended deployment in
practice because dirt or dust particles might settle down on top of the diffuser

cap and are expected to have a similar negligible impact.

6.53. Discussion

In conclusion, the estimates of both devices measured in all six field cam-
paigns are compared in an overall scatter plot, cf. Figure 9. Note that a rea-
sonable campaign-based clustering of estimates could not be observed since we
considered different growth characteristics in each campaign and, thus, covered

a wide range of LAI values each time.
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Table 1: Performance of related approaches

Approach Technique Species Result (r?) Reference
Ryu et al. (2012) DHP trees 0.94 LAI-2000
Confalonieri et al. (2013) DHP rice 0.97 destructive
Francone et al. (2014) DHP grass 0.86 AccuPAR
maize 0.92 AccuPAR
reed 0.88 AccuPAR
Qu et al. (2014b) WSN maize  0.27-0.97 LAI-2000
Bauer et al. (2014) WSN shrubs  0.85-0.90 LAI-2200

Figure 9 confirms the strong agreement of our approach with the reference
instrument (r2 = 0.88, RMSE =0.28) and, thus, its appropriate accuracy. More-
over, due to the extensive number of measured LAI values (n=230) under dif-
ferent seasonal and environmental influences as well as in various phenological
stages, its robustness is implicitly demonstrated.

With regard to the related work, this strong and robust linear correlation
can compete with results obtained by state-of-the-art approaches, which are ex-
emplarily itemized in Table 1. The results generally are based on fewer measure-
ment samples (n < 30) and, thus, do not provide information about their robust-
ness. In contrast to these approaches, our novel sensor enhancement has the
advantage of being simpler, yet more effective and cost-efficient. Compared to
DHP approaches, no complex data processing is required, which demands more
powerful and energy-consuming devices. On the other hand, no custom array
of multiple sensors is necessitated as by related WSN approaches. Hence, our
sensor enhancement increases the feasibility of low-cost and large-scale WSNs

for the in-situ LAI assessment.
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7. Conclusion

This paper presented a novel sensor approach based on COTS technology
that significantly enhances the potential of IEEE 802.15.4 WSNs for the in-situ
assessment of LAI, which is one of the most important metrics for bio-physical
crop characteristics. It was shown that our approach enables new opportunities
in terms of feasibility and robustness. Moreover, a comparative analysis re-
veals that substantial accuracy is achieved. Results are qualitatively comparable
with state-of-the-art results by specific commercial instruments (e.g., AccuPAR,
SunScan, and LAI-2200) and the complementary hemispherical photography ap-
proach, but enabled by small, low-cost, and energy-efficient devices.

In our future work, additional investigations in different crops are intended.
For that purpose, we will systematically conduct destructive LAI measurements
and occasionally process remote sensing data to widely validate our results.
Furthermore, we plan to deploy a long-term WSN prototype enabling LAI ac-

quisition with high spatiotemporal resolution.
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