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Abstract—Wireless Sensor Networks (WSNs) are deployed in
a wide range of application scenarios. These typically involve
monitoring or surveillance of animals or humans, infrastructure,
or territories. Since security as well as privacy play an increas-
ingly important role in these contexts, sensor nodes and sensor
networks need to be protected from spurious environmental
effects and malicious attacks. In addition to attacks known from
conventional wireless networks, the specific properties of WSNs
lead to new Kkinds of attack. Moreover, countermeasures are
subject to strict resource limitations of the motes and, therefore,
have to be light-weight and effective at the same time. In this
paper, we first present a comprehensive security architecture
for WSNs, consisting of different attack types (including WSN-
specific attacks) and countermeasures. Second, we propose a
modular Intrusion Detection System (IDS) as a framework for
this architecture. Finally, we give details on selected modules and
discuss practical implementation issues.

Index Terms—Security; Intrusion detection; Wireless sensor
networks

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of small and
highly resource-constrained sensor nodes (motes) that mon-
itor changes of some measurable phenomenon, e.g., light,
temperature, or movement. In order to deliver the measured
sensor data to one or more sinks, these motes autonomously
form a wireless multi-hop network. In-network processing is
commonly applied to aggregate data and minimize traffic on
the way to a sink. In addition to this convergecast communi-
cation pattern, WSNs also use a one-to-many reverse channel
for control purposes, including Over-The-Air Programming
(OTAP). WSNs are deployed in a steadily growing plethora
of application areas. These range from military (e.g., security
perimeter surveillance) over civilian (e.g., disaster area moni-
toring) to industrial (e.g., industrial process control).

Application scenarios of WSNs typically involve monitoring
or surveillance of animals or humans, infrastructure, or terri-
tories. Since security as well as privacy play an increasingly
important role in these contexts, sensor nodes and sensor
networks need to be protected from spurious environmental
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effects and malicious attacks. For example, motes in a disaster
relief scenario might sense seismic activity data which is cru-
cial to arrive in time and unmodified. Medical data belonging
to certain patients is additionally sensitive in terms of privacy
and should, therefore, be protected against eavesdropping.

Over the last two decades, much work has been done
identifying and detecting potential threats to Mobile Ad hoc
NETworks (MANETSs). However, the specific properties of
WSNss lead to new kinds of attack as well as new approaches
to countermeasures: Attackers may physically access motes
and take complete control by re-programming them. Counter-
measures are subject to strict resource limitations of the motes
and, in general, cannot be used as is from the MANET context.
Therefore, design and implementation of countermeasures
tailored to these specific requirements are necessary.

Some work has already been done in the area of intru-
sion detection in WSNs, mostly with simulative evaluations.
Although simulation is an invaluable tool for testing and
evaluating new security approaches, simulation models cannot
properly reflect the conditions of a WSN in a real deployment.
Therefore, experimental evaluation with real motes is preferred
especially by the WSN community.

Our contribution is two-fold: (1) We present a comprehen-
sive security architecture for WSNs which addresses several
layers. Different attack types are discussed and for each
attack type, a countermeasure approach is given. WSN-specific
attacks are also included in this architecture. (2) We propose a
modular Intrusion Detection System (IDS) as a framework for
this architecture and discuss practical implementation issues.

The rest of this paper is organized as follows: We first dis-
cuss related work in Section II. A threat analysis leading to our
security architecture is presented in Section III. The proposed
IDS along with a discussion of practical implementation issues
are described in Section IV. Finally, we conclude the paper
and give directions for future work in Section V.
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II. RELATED WORK

Some work on intrusion detection for WSNs can be found
in the literature, which we briefly discuss in the following.
Onat and Miri [14] propose a statistic-based intrusion de-
tection scheme. They assume a static WSN, in which the
neighborhood of a node is more or less fixed. Data about the
neighborhood is gathered and analyzed to detect anomalies.
Attacks that can be detected with this scheme are node
impersonation and resource depletion. Moreover, the proposed
scheme is evaluated through simulation.

Da Silva et al. [5] present a rule-based IDS. It comprises
three phases: During the data acquisition phase, monitor nodes
filter and collect messages in promiscuous mode. During
the following rule application phase, these messages are run
through a pre-defined set of generic rules. If a message fails
a test in this phase, a failure is raised. Finally, the intrusion
detection phase is used to compare the number of failures
to some threshold and if the former exceeds the latter, an
intrusion is assumed. For the evaluation of their scheme, the
authors also implemented a new simulator.

Krontiris et al. [10] propose a collaboration-based intrusion
detection system and adapt it to detect sinkhole attacks. Each
node analyzes packets in promiscuous mode based on user-
defined rules. If there is a deviation from normal behavior,
an anomaly is detected. To finally decide whether a node
is indeed an intruder, a cooperative mechanism among the
neighborhood is triggered and a mutual conclusion is made.
In order to react to an intrusion, a response mechanism is also
part of the IDS. As an example, the authors present rules for
and experimentally evaluate the detection of sinkhole attacks
against the MintRoute routing protocol [20].

Rajasegarar et al. [16] survey different anomaly detection
techniques. A classification of these techniques can be made
based on what type of background knowledge of the un-
derlying data is available. If there is no prior knowledge
about the data, unsupervised learning or clustering can be
used. Supervised learning requires data training sets, which
include data labeled as normal or abnormal. If characteris-
tics of normal and abnormal data change, the classifier has
to be retrained. Semi-supervised learning involves an initial
learning of a generalized data set. The classifier can detect
anomalies and dynamically adapt to system changes as new
data becomes available. Another way to categorize anomaly
detection techniques is to distinguish between the model type.
Statistical model techniques assume that the distribution of the
data analyzed for anomalies is known a priori. Non-parametric
model techniques, on the other hand, make no assumption
about the data distribution beforehand.

III. THREAT ANALYSIS

The goal of a threat analysis is to identify threats in terms
of attack types in the context of the considered network. Due
to the specific properties of WSNs, new kinds of attack as
well as new challenges for countermeasure development arise:
In contrast to nodes of a MANET, it is quite likely that an
attacker gains direct physical access to a mote since there

are various WSN applications where the motes are deployed
within a freely accessible area [15]. Furthermore, end-to-end
encryption of sensor data is infeasible if in-network processing
is applied since aggregator nodes need to have access to
the sensor values [9]. A general challenge arises from the
resource constraints, especially from limited processing power
and memory. This requires countermeasures to be light-weight
but also effective at the same time.

There are two important criteria for categorizing different
attack types (cf. [9]'): One criterion is differentiating between
outsider attacks and insider attacks. An outsider attack is an
attack where the attacker has no direct access to the existing
network. Instead, the attacker can only access the wireless
channel. An insider attack, on the other hand, is an attack
where the attacker has compromised legitimate motes or has
obtained key material or similar data from a legitimate mote
in order to gain illegitimate access to the network.

The other criterion is concerned with the hardware resources
the attacker can dispose of. A mote-class attacker uses mote
hardware for attacking the WSN, i.e., the attacker’s resources
are as constrained as the resources of legitimate motes. A
laptop-class attacker uses laptop-like hardware with much
more resources at his disposal. This leads to a significant
advantage since certain attacks have a higher impact with more
resources.

Figure 1 shows a threat analysis as well as countermeasures
for WSNs. We first divide the threat analysis into the goals an
attacker might have (top layer “Goal”):

Manipulate Data: Depending on the WSN application
scenario, data manipulation can have devastating effects. Two
examples are patient monitoring and industrial automization.
This goal can mainly be achieved at the routing layer by
faking link qualities and, thus, attracting a lot of traffic. In
the context of WSNs, it is also feasible that an attacker moves
a mote away from its originally assigned position. Since in
most WSN application scenarios, motes sense data from their
surroundings, this data is dependent on the position. If the
attacker moves a mote, the sensor data from the new surround-
ings is misleadingly assumed to be from the original position’s
surroundings. The “Manipulate Data” goal corresponds to the
security requirement integrity.

Eavesdrop Data: Different advantages for the attacker result
from eavesdropping data. On one hand, the attacker can sniff
potentially confidential data. On the other hand, it enables
the attacker to perform statistical traffic analysis for deducing
which motes pose the most worthwhile targets (also known as
“homing” [18], [21]). Furthermore, packet structure analysis
yields hints about protocol usage on, e.g., Media Access
Control (MAC) or routing layer. With this knowledge, the
attacker can launch more efficient attacks which are tailored
to specific protocols. A threat especially present in WSNs is
dumping of the contents of a mote’s ROM and/or RAM. Since
the mote’s memory might contain key information for en- and

INote that even though [9] is somewhat dated, it still applies due to its
fundamental nature.
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decryption of network communication, the attacker can gain
access to the WSN. The “Eavesdrop Data” goal corresponds
to the security requirement confidentiality.

Drop Data: A further threat to WSNs is dropping data
which can be considered as Denial of Service (DoS) in a
broader sense. A simple and effective attack is to jam the wire-
less channel. Nodes trying to send under this attack are forced
to drop their packets at some time. Reception of data packets
is also affected by the interference. Another implementation of
this goal consists of dropping packets that were supposed to be
forwarded due to multi-hop communication. Freely accessible
motes might also be completely removed from the network by
the attacker. The “Drop Data” goal corresponds to the security
requirement availability.

Network Access: Since most outsider attacks can be pre-
vented quite easily by encryption and authentification [9],
attackers are interested in getting access to the network. This
can be achieved by adding a mote which pretends to be a
legitimate member of the network. A more complex way is to
obtain key information from a legitimate mote’s memory or
even to compromise a legitimate mote. The latter can, e.g., be
realized through malicious usage of OTAP.

The four described goals are not mutually exclusive and
may be combined. In order to launch an insider DoS attack,
network access must be achieved first. We connect each of
the goals to the attacks (middle layer “Attack”) that may be
used to reach that specific goal. Since an attack may realize
multiple goals, we group the attacks by the layer on which
they are conducted (sub-layers “PHY”, “MAC”, “RTG”, and
“NODE” in Figure 1). In the following, we will describe the
different attacks as well as possible countermeasures (bottom

WSN threat analysis and countermeasures.

layer “Countermeasure”). Note that the term “countermeasure”
is meant as a generic term for preventive, detectional, and reac-
tional measures. Preventive measures are generally preferred
but these are not always feasible. Therefore, in these cases,
detectional and reactional measures have to be applied. With
regard to the IDS, we focus on detection.

PHY Layer: On the physical (PHY) layer, sniffing and
jamming can be used to attack the network. Sniffing means
eavesdropping on information passing through the shared and
freely accessible wireless channel. Since sniffing works on
the physical layer, the attacker has access to packet data of
all higher layers. Moreover, sniffing is a completely passive
attack, i.e., no modification of data is involved. It also enables
traffic analysis, which works even if communication is en-
crypted since knowledge of packet contents is not necessary
(cf., e.g., [6]). Sniffing can be performed as an outsider as
well as an insider attack and even though a mote might be
required for capturing the data, further processing is commonly
performed on laptop-class hardware.

A common preventive countermeasure against sniffing is the
encryption of the whole network communication. This does
not, however, prevent the attacker from performing a traffic
analysis, as has been explained above. The encryption can
be symmetric or asymmetric, mainly differing in encryption
strength and key distribution complexity.

Jamming is a classic outsider attack with the aim to jam the
wireless channel with an interfering signal. This DoS attack
on the physical layer requires the jammer to either have a
strong signal or to be in the proximity of the target nodes.
Depending on the required range and duration of a jamming
attack, mote-class or laptop-class hardware is used. There



are various ways to realize a jammer, differing in strategy,
efficiency, and detection complexity. Jammer classes can be
divided into constant, deceiving, randomized, and reactive (for
details, see [22]).

A countermeasure against jamming is anomaly-based de-
tection which can be implemented on different layers. On
the MAC layer, e.g., an anomaly in the Carrier Sense Time
(CST) can be detected. The CST is the time needed during
a transmission attempt to access the shared medium. On
application and routing layer, the Packet Delivery Ratio (PDR)
may be used as an indicator. On the physical layer, the
Received Signal Strength Indicator (RSSI) can be used as a
metric. Indicators on multiple layers may also be combined
(cross-layer approach) to increase the quality of the detection.

MAC Layer: On the MAC layer, rushing and denial-of-
sleep attacks may be conducted. Many MAC protocols work
on a cooperative basis. It is assumed that all nodes adhere
to the protocol’s rules in order to achieve a certain fairness
concerning medium access. This trust in node cooperation is
betrayed with the rushing attack by ignoring specific rules
and thereby sending faster than legitimate nodes [21]. Mostly
Carrier Sense Multiple Access (CSMA)-based MAC protocols
are affected by this since backoff timers can be simply ignored.
A rushing attacker can capture the wireless medium since other
nodes adhere to the protocol and backoff accordingly. Since
legitimate nodes are prevented from transmitting, rushing
belongs to the class of DoS attacks. As preparation for a
routing attack (e.g., sinkhole), rushing can be used to send fake
routing information faster. Rushing is generally performed as
an insider attack with mote-class hardware.

As a countermeasure against rushing, anomalies in the
CST can be detected similar to jamming detection. As with
jamming, legitimate nodes have an unconventionally high
CST since the rusher prevents them from getting access to
the medium. However, since rushing is a MAC layer attack,
the attacker can be narrowed down to the direct (1-hop)
neighborhood of a node that has detected the anomaly.

Since energy efficiency is one of the most important design
factors in WSNs, the energy resource of motes poses a
worthwhile target for an attacker. Most energy of a mote is
consumed by wireless communication [1]. The MAC protocol
mostly controls the sleep phases of the radio chip. Therefore,
this layer is the primary target layer for an attack on energy
resources. A special type of DoS attack is the denial-of-sleep
(also known as “battery exhaustion” or “sleep deprivation™)
attack [17], [18] which exploits certain mechanisms to keep a
mote from turning its radio chip off. Intelligent denial-of-sleep
attacks can reduce the network lifetime of a WSN from several
months to a few days. This requires knowledge about the MAC
protocol in use by the target WSN which, however, can be
gained quite easily through traffic analysis [18]. Although not
limited to insider attacks, denial-of-sleep is less effective as
an outsider attack. Laptop-class attackers can also achieve a
higher impact than mote-class attackers with denial-of-sleep.

An easy but effective countermeasure against denial-of-
sleep attacks is the detection of anomalies in energy con-

sumption. Since denial-of-sleep induces an unconventionally
high energy consumption, it can be distinguished from regular
consumption. Note that anomaly detection includes statistical
quantification of “regular” energy consumption.

RTG Layer: On the routing (RTG) layer, sinkhole, worm-
hole, and sybil attacks can be launched to manipulate, eaves-
drop, or drop data. A sinkhole attack attracts as much traffic
as possible such that data is routed through the attacking
node [9]. This enables the attacker to freely decide on what to
do with the packets. A successful sinkhole attack generally
requires the attacking node to make itself attractive with
respect to the routing metric (e.g., Estimated Transmission
Count (ETX)). If the attacker propagates a fake optimal metric
value, neighboring nodes will prefer the (fake) optimal link
over (legitimate) sub-optimal links. Due to the commonly
used convergecast communication pattern in WSNss, a sinkhole
attack is most efficient if launched near a root node. A sinkhole
is commonly launched as an insider attack and can be created
with mote-class hardware. However, a laptop-class attacker
can also utilize his higher transmission range to propagate a
1-hop connection to a root node, although he is farther away
than legitimate motes. When a sinkhole has been established,
packets can be dropped selectively or completely, which is
known as a greyhole (or “selective forwarding”) or blackhole
attack, respectively.

Sinkhole attacks are generally hard to counter [9]. This is
mainly due to the fact that routing metric advertisements, such
as end-to-end delay or path ETX to a root node, are hard
to verify. Therefore, sinkhole countermeasures are generally
protocol-specific and/or anomaly-based.

A wormhole attack is a special type of replay attack.
Using a fast out-of-band connection only available to the
attacker, packets received at one end of the wormhole link are
transmitted to the other end of the link and replayed there [9].
The out-of-band connection may be, e.g., wired with a high
data rate, making legitimate nodes at the other end believe that
the original sender is only a few hops away. Although it can
be performed with one node that simply forwards packets,
it is generally assumed that the attacker uses two nodes
connected via the out-of-band link. Since the attacker does
not necessarily need to know a packet’s contents, a wormhole
can be performed as an outsider attack. Both mote-class and
laptop-class hardware are feasible for creating a wormhole.

Since the out-of-band connection is only known and vis-
ible to the attacker, a wormhole is hard to prevent or even
to detect [9]. As with the sinkhole attack, countermeasures
against wormholes need to be adjusted to the deployed routing
protocol

A sybil attack is launched when the attacker assumes
multiple identities with one node [9]. This may be an advan-
tage for the attacker if a multi-path routing protocol is used
which maintains multiple paths to a receiver. The protocol
(mistakenly) assumes that paths with disjunct nodes are used,
while the attacker actually combines multiple node identities
within one node. In this case, a sybil attack can be used for



preparing a sinkhole attack. Furthermore, sybil attacks are a
security threat to localization protocols.

Generally, authentication mechanisms for verifying identi-
ties can prevent sybil attacks. However, the main threat of this
attack lies in the preparation of a sinkhole attack. Therefore,
ultimately, countermeasures against sinkholes can be applied
here.

NODE Layer: Independent of a specific protocol layer,
sensor nodes (motes) can also be attacked physically (NODE).
The dislocate node attack is easy to perform as an outsider
if the motes are freely accessible and movable. By dislocat-
ing a node, the attacker can manipulate measurement data.
Moreover, dislocating fixed anchor nodes needed for some
localization techniques can significantly impair localization
performance. Node dislocation can be countered by appro-
priate localization techniques in case of a static WSN. In
case of mobile WSNs, however, unauthorized dislocation can
generally not be distinguished from authorized mobility.

A sensor node can also be completely removed from the
network. The remove node outsider attack can be realized by
destroying a node or moving it out of range of the network.
This results in a loss of general network performance and is,
therefore, considered as a DoS attack. A simple but effective
countermeasure is a centralized node failure detection based on
periodic status messages (heartbeats). If a heartbeat is missing,
node failure is assumed. If the WSN application already
includes periodic messages of nodes, there is no overhead
induced by this detection technique.

One way to gain access to the network as an attacker is
to add a node of mote- or laptop-class. When the attacker
has successfully gained access with the insert node attack,
insider attacks can be launched. Since this attack requires the
node to understand the communication of the legitimate nodes,
encryption (e.g., AES) can be used as a countermeasure.

An attacker can also access a node’s memory to gain
network access. A mote can be connected to laptop-class
hardware, thereby obtaining critical data like key material.
To counter this attack, memory can be encrypted. However,
due to the resource restrictions, only symmetric encryption
is feasible. An open challenge in this context is to store the
corresponding encryption key on the mote in a secure manner.

The reprogram node attack exploits the reprogramming
capabilities of a mote. Running code can be replaced with
arbitrary malicious code by the attacker. There are basically
two ways for an attacker to overwrite a mote’s running code:
Physical access to the mote enables wired reprogramming,
while OTAP can be exploited to reprogram a mote unautho-
rized and wirelessly. The former is an outsider laptop-class
attack, while the latter usually requires network access. In gen-
eral, it is not possible to distinguish a legitimate node from a
compromised one. Therefore, preventive countermeasures have
to be taken. A simple but self-restricting countermeasure is
the complete omission of reprogramming capabilities. This is
only feasible in application scenarios where reprogramming is
not necessary. Otherwise, OTAP can be augmented by digital
signatures for the code images. This prevents unauthorized

=

o
P L A

\\?;/ -
® \?‘/ IDS Server

Wireless Sensor Network
Heartbeat
Module

1

]

Gateway

by P N
7;’

Movement csT oTAP
Module Module Module

Fig. 2. Basic IDS architecture.

reprogramming and can be realized with symmetric as well as
asymmetric cryptography.

IV. INTRUSION DETECTION SYSTEM

In order to properly evaluate the security architecture, we
implemented a modular IDS, where a module corresponds to
one of the countermeasures. As the main purpose, the IDS
enables the WSN administrator to monitor the network status.
In particular, alarms are triggered by the detection modules
if an attack has been detected. These alarm messages as
well as status messages (collectively called “IDS messages”)
are processed and visualized by the server application for
immediate intrusion response.

A. Architecture

The basic architecture of the IDS is shown in Figure 2.
Local detection modules on the motes send IDS messages via
wireless radio to the gateway, which forwards these messages
via serial line to the central IDS server. The server processes
and visualizes messages according to the type.

Detection modules are integrated in a mote’s application and
share a common IDS messaging framework. Local detection
modules are mainly divided into modules with periodic and
event-based messaging. An example for a module with peri-
odic messaging is the heartbeat module, where periodic status
messages indicate that the mote is still alive. Event-based
messaging is used by modules which send alarm messages
triggered by the detection of an attack. The movement module,
e.g., sends an alarm if it detects that the mote is being moved.
In order to distinguish different modules and message types,
each IDS message type is assigned a unique IDS-ID. An
overview of the message types is given in Table I.

IDS messages are sent by the motes to the IDS gateway.
This gateway is responsible for reducing the received message
to the essential parts for the IDS server, i.e., IDS-ID, origina-
tor address, and (optional) payload. Based on the originator
address, the server can map and display the alarm/status
accordingly. The compressed message is send via serial line
to the server.



TABLE I
IDS MESSAGE TYPES OF THE IMPLEMENTED MODULES.

[ Module [ IDS-ID | Payload [ Information Content
Heartbeat * arbitrary vital sign (*: arbitrary (IDS) message)
Movement 0x01 movement sensor type movement detection
CST 0x02 alarm status, CST sample, threshold | jamming alarm status change
OTAP 0x03 image # failed signature verification
0x04 counter initialization of an OTAP process with invalid counter
IDS v0.03 . e -
E ElEE If a status message has not been received from a node within
Status Reset | Log to file | Choose background color . i i . . R .
this time interval, disconnection or failure (possibly caused by
a remove node attack) of that specific node is assumed. The
module triggers an alarm to the server accordingly.
The delay of detecting a potential remove node attack is
directly dependent on the heartbeat interval length ¢. Since the
module maintains a global timer for all nodes, the detection
delay 0 is at least as long as the interval and at most as
long as two intervals, i.e., t < § < 2 -t. Longer intervals
Al induce less heartbeat status messages but increase detection
delay. Likewise, shorter intervals induce more messages but
[Coa00] decrease detection delay. Therefore, a trade-off between mes-
e sage overhead and detection delay has to be made when
2011/04/15 13:11:26.551 Heart Heartbeat wait time elapsed (10001 ms) . . . .
2011/04/15 13:11:36.551 Heart Heartbeat wait time elapsad (10000ms) choosing a value for {. However, if the mote application
2011/04/15 13:11:46.552 Heart Heartbeat wait time elapsed (10001ms) . . .
2011/04/15 13:11:46.970 NMM 9400 movement detect (PIR) already includes pel’lOdlC messages, no extra status messages
2011/04/15 13:11:49,795 NMM 1C67 mavemnent detect (ACC) hd . . .
< ] | ¥ are necessary since the only requirement is that messages are

/home/wsnlab/Desktop/ISENSE/IDS/wsnlab. config [/devittyUSB15|isense

Fig. 3. Graphical User Interface (GUI) of the IDS server.

B. Server

The IDS server is implemented as a modular Java ap-
plication that processes and visualizes incoming messages.
Each server module processes messages belonging to a cer-
tain detection module on the motes. Incoming messages are,
therefore, forwarded to their respective processing module
according to the IDS-ID.

As shown in Figure 3, the server also provides a GUIL. The
lower part displays timestamped alarm and status messages.
This log can also be written to an external file for later
analysis. The upper part shows the monitored network with
topology and node addresses configured by the user. Alarm
messages are visualized immediately upon module notification
through color change of the originating node (from green to
red). Furthermore, separately for each node, the user can define
which detection modules are in use.

C. Modules

We implemented four modules for the IDS so far: Heartbeat,
movement, CST, and OTAP. Each will be described in the
following.

Heartbeat Module: The heartbeat module is used to detect
node failure or node disconnection in general. In particular,
the remove node attack can be detected with this module. For
each monitored node (as defined by the user), a status message
is expected to arrive before the global heartbeat timer runs out.

sent periodically (cf. Table I).

Movement Module: The movement module is an event-
based messaging module with a fixed IDS-ID and can be
used to detect dislocate node attacks in static WSNs. Incoming
alarm messages with this IDS-ID include the sensor type of
the originating mote that triggered the alarm (cf. Table I). This
might be an accelerometer or a passive infrared sensor on the
mote. A user-defined threshold value determines the sensitivity
of these sensors. If it is set too low, even subtle environmental
effects might trigger an alarm (false positive). Likewise, if
it is set too high, a cautious dislocate node attack might be
successful (false negative).

CST Module: The CST module is an anomaly-based detec-
tion module which sends an alarm to the server if a certain
threshold for the CST has been exceeded. As mentioned
earlier, rushing and jamming attacks can be detected with
this scheme. Experience in the context of MANETSs has
also shown that the CST is a qualified indicator especially
for jamming detection [2]. We adopted the threshold-based
detection approach proposed in [2] which dynamically adapts
to the network’s traffic load. In order to distinguish regular
traffic from anomalies, an aging function is used to locally
compute the anomaly threshold ,,:

thi=1—a) t,+a-s,

where £, is the old threshold, s the current CST sample value,
and « the aging factor. The aging factor is a parameter which
basically defines the importance of new samples for the new
threshold.



An alarm is triggered if the current sample s exceeds the
old threshold ¢, at least by the weighted standard deviation o
over all CST samples measured so far:

1,
alarm =
0,

Here, the tolerance range based on the standard deviation
compensates regular fluctuations of the CST. Each change
in the alarm status triggers an IDS message transmission
addressed to the server based on best effort. This message
includes the alarm status, current sample, and threshold (cf.
Table I).

OTAP Module: The OTAP module essentially enables the
prevention of unauthorized reprogramming attempts, i.e., it
prevents the reprogram node attack. It verifies the digital
signature associated with a new code image and its origin.
If the verification fails, it denies any further processing of
the code image and sends an alarm message to the server.
However, since there was no appropriate implementation of
an OTAP protocol available which includes digital signatures
for secure reprogramming, we implemented our own protocol.

Similar to the light-weight approach of NWProg [19], our
implementation of a secure OTAP protocol is based on the
well-known OTAP protocol Deluge [8]. In order to make it
light-weight, we replaced the complex dissemination algorithm
with simple propagation. We augmented the protocol with dig-
ital signatures based on elliptic curve cryptography, ensuring
the integrity and authentication of disseminated code images.
Thus, the OTAP module has the ability to detect manipulated
and malicious images, prevents their installation, and reports
their existence by sending alarm messages with a specific IDS-
ID to the IDS server (cf. message type 0x03 in Table I).

Using asymmetric cryptography, our OTAP approach is se-
cure against access node memory attacks since only the public
key is stored on each mote. The only instance disposing of
the private key used to sign new code images is the legitimate
OTAP initiator. Furthermore, we extended code images by a
version counter in order to protect the OTAP process against
replay attacks (cf. message type 0x04 in Table I).

ifs>t,+w-o
else.

D. Implementation

We have implemented the four modules described in Sec-
tion IV-C for different WSN operating systems, namely
TinyOS [7] and iSense [4], supporting multiple mote plat-
forms, i.e., TelosB [13], MicaZ [12], and iSense-CM10C [3].
Depending on the security requirements of the application
scenario and the sensor types provided by each platform, these
modules can be integrated into the basic application of the
WSN.

In our implementation, we assume a light-weight basic
application with added Advanced Encryption Standard (AES)
encryption as general protection against insider attacks. The
application periodically gathers and transmits sensor data to a
dedicated sink. Leveraging these transmissions as heartbeat
messages, our heartbeat module causes neither extra status
message overhead nor additional memory usage. Regarding
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Fig. 4. Memory usage of different IDS modules implemented in TinyOS,
depending on the hardware platform (TelosB vs. MicaZ)

the limited memory resources of current mote platforms, this is
advantageous since the basic application itself already requires
a significant part of the available memory (cf. Figure 4). In
this figure, the percentaged memory usage (ROM and RAM)
required by the IDS modules is visualized in combination with
our basic application for platforms TelosB (48 kB ROM, 10kB
RAM) and MicaZ (128 kB ROM, 4 kB RAM) running TinyOS.

The CST module enabling local jamming detection is in-
tegrated into the application’s Low Power Listening (LPL)
mechanism. Additionally, this module can be extended by an
optional serial line add-on (“CST serial line” in Figure 4)
which offers an alternative channel for reporting alarms to
the IDS server.

In the OTAP module, we use the TinyECC [11] library for
the cryptographic operations. Due to the memory requirements
of this library and the inherent memory requirements of the
boot loader, the memory usage of the OTAP module is very
high compared to both modules described above.

Since the TelosB mote offers neither acceleration nor pas-
sive infrared sensors, we implemented a prototype of the
movement module for the iSense-CM10C platform which runs
the iSense operation system. On this platform, the movement
module requires 5668 B of program memory (ROM). 60 968 B
of ROM are necessary for a comparable basic application
including the heartbeat module.

As can be inferred from Figure 4, due to strict memory
constraints, running all implemented IDS modules at the same
time is not possible on the considered platforms. Therefore, the
WSN administrator has to choose an appropriate security level
(by selecting a subset of the modules) for a specific application
scenario and needs to make a trade-off between security and
the functionality of the WSN application.

V. CONCLUSION

We presented a comprehensive security architecture for
WSNs, identifying different well-known as well as WSN-
specific attacks on various layers. For each of these attacks,
a possible countermeasure was also given. Furthermore, we
proposed a modular IDS as a framework for this architecture.
Detection modules run on the motes and detect an attack
locally. In case of a detection, an alarm message is sent to
the IDS server where the corresponding server-side module



processes the message and the alarm is displayed in a GUI for
immediate response. Selected modules have been implemented
and code sizes have shown that a trade-off between security
and application functionality has to be made due to strict
memory restrictions.

In the future, we want to improve and add more modules
to the IDS framework. We are also planning to evaluate the
IDS in our WSN testbed in the context of various static and
mobile network scenarios.
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