Selective and Secure Over-The-Air Programming
for Wireless Sensor Networks

Nils Aschenbruck *®, Jan Bauer®, Jakob Bieling®, Alexander Bothe®, and Matthias Schwamborn*

*University of Osnabriick - Institute of Computer Science

Albrechtstr. 28, 49076 Osnabriick, Germany
{aschenbruck, schwamborn}
@informatik.uos.de

Abstract—The growing range of Wireless Sensor Network
(WSN) applications, their long-life and large-scale design, as well
as various deployment fields necessitate the feasibility of remote
maintenance and reprogramming of in-situ sensor nodes. The
network-wide dissemination of program code is not appropriate
in every WSN due to the heterogeneity of sensor hardware, the
diversity of sensing tasks, and the event and location dependency
of software. Thus, a flexible and group-wise selective Over-
The-Air Programming (OTAP) is required in these scenarios.
Furthermore, securing the OTAP protocol is imperative in order
to prevent unauthorized and malicious reprogramming attempts.
In this paper, we introduce SenSeOP, a selective and secure
OTAP protocol for WSNs. For this purpose, the proposed protocol
uses multicast transfer supported by asymmetric cryptography.
We evaluate the performance of our approach in real testbeds,
compare it with state-of-the-art protocols, and show that this
approach enables efficient and reliable wireless reprogramming.

Index Terms—Secure OTAP; Reprogram node attack; WSN

I. INTRODUCTION

A Wireless Sensor Network (WSN) is composed of small
and highly resource-constrained sensor nodes that monitor
some measurable phenomenon in the environment, e.g., light,
humidity, or temperature. WSNs are deployed in a steadily
growing plethora of application areas. These range from
military (e.g., security perimeter surveillance) over civilian
(e.g., disaster area monitoring) to industrial (e.g., industrial
process control). Application scenarios of WSNs typically
involve monitoring or surveillance of animals or humans,
infrastructure, or territories. Their long-life and large-scale
design, various deployment fields, and changing environments
necessitate the feasibility of remote maintenance and in-situ
reprogramming of sensor nodes using a so-called Over-The-
Air Programming (OTAP) protocol. In particular, if sensor
nodes are inaccessible after deployment, a reliable OTAP is
crucial.

We believe that in a plurality of WSNs, the network-wide
dissemination of program code is not appropriate. Within
a single WSN, the heterogeneity of sensor hardware, the
deployment of manifold sensor technologies, the diversity of
sensing and communication tasks, and possibly the event and
location dependency of software require a flexible, group-wise
selective OTAP approach in order to be able to efficiently
reprogram a subset of nodes. Furthermore, securing the OTAP

°University of Bonn - Institute of Computer Science 4
®Fraunhofer FKIE
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
{bauer, bieling, bothea}
@cs.uni-bonn.de

protocol is imperative in order to protect the OTAP from unau-
thorized reprogramming attempts, i.e., to prevent reprogram
node attacks.

In this paper, we present SenSeOP, a Selective 'n’ Secure
OtaP protocol which is integrated in our intrusion detection
system [1] and offers both, selective and secure reprogram-
ming in WSNs. For our approach, we assume infrequent
and non-regular software updates. On the one hand, these
updates are supposed to be time- and energy-efficient. On
the other hand, it is essential that the primary application
running on the sensor nodes is interrupted by the OTAP
process as little as possible. However, short interruptions of
several seconds are inevitable due to the usage of strong cryp-
tographic operations and must be tolerated by the application.
Additionally, we assume that confidentiality is not required in
these scenarios since no trusted information, e.g., symmetric
keys, are exchanged using our SenSeOP protocol. However, if
in a specific scenario confidentiality is demanded, it may be
achieved by link-layer encryption, e.g., AES. Moreover, our
SenSeOP protocol in its current version is tailored to scenarios
with all nodes residing in communication range to each other.

The rest of this paper is organized as follows: We first
discuss related work in SectionIl. A threat model leading to
our security goals is presented in SectionIIl. Details of the
proposed secure OTAP protocol are described in SectionIV
and a performance evaluation is conducted in SectionV.
Finally, we conclude the paper and point out future work in
Section VI.

II. RELATED WORK

First research work related to OTAP can be found in
the literature beginning with the approach of Reijers [18]
and the In-Network Reprogramming tool XNP [4]. Whereas
Reijers’ approach essentially enables a diff-based incremental
reprogramming scheme, entire program images are used in
the so-called monolithic approach of XNP. Among others, the
advantages and drawbacks of both approaches are discussed
in [22] and [3] which, furthermore, provide a detailed survey
of OTAP in WSNs.

In practice, incremental OTAP protocols based on Reijers
(e.g., [9]) could not be established due to special requirements
of hard- and software. In contrast, the research focused on

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICCCN.2012.6289278

the monolithic reprogramming family emerging with XNP
and produced enhanced protocols and implementations. This
family includes the well-known OTAP protocols MOAP [6],
MNP [12], and Deluge [7]. The latter protocol, presented in
2004 by Hui and Culler, introduces a fragmentation scheme
of the program image and supports a self-organizing multihop
reprogramming realized by a sophisticated negotiation-based
dissemination mechanism using Trickle [15]. Deluge is widely
used and still state-of-the-art although there are many exten-
sions proposed.

In the second half of the last decade, beginning with the
distribution of WSNs and the deployment of OTAP, first
questions concerning security arose (cf. e.g., [13]). In 2004,
research efforts applying cryptography to sensor platforms
(e.g., TinySec [10] and TinyECC [16]) enabled asymmetric
cryptography based on Elliptic Curve Cryptography (ECC)
in WSNs. However, asymmetric cryptography is expensive
in terms of memory and computational runtime and must
only be used sparsely. As a result, based on Deluge and the
new opportunities, three OTAP protocols [5], [11], [14] were
proposed in 2006 followed by [8] in 2008. These protocols
leverage asymmetric cryptography in order to protect the
OTAP from being exploited. Given the image fragmentation
of Deluge, Sluice [14] uses hash chains for authentication
based on pages, whereas Dutta et al. [5] apply hash chains
on packet basis. In [11] and [8] a hybrid combination of
hash trees and hash chains is used to enable a more flexible
dissemination of the program code. Moreover, Seluge [8]
and the confidential dissemination protocol proposed in [20]
take specific signature-based Denial of Service (DoS) attacks
explicitly into account. However, since each of the secure
protocols mentioned above is based on Deluge, none of them
supports a selective, group-wise OTAP.

III. THREAT MODEL AND SECURITY GOALS

Corresponding to [5], [8], [11], [14], we define the following
generic threat model and security goals demanded by our
approach.

« Sensor nodes deployed in the WSN are non-tamper-proof

and may be compromised by an attacker.

o The base station acting as the OTAP gateway is assumed
to be a trusted device which cannot be compromised.

« We assume an inside attacker who is able to eavesdrop
on, inject, and manipulate packets in the WSN.

Arising from the threat model, the security goals stated
below represent the essential requirements for secure OTAP
protocols.

e Reprogram node attacks resilience: The main goal of
the SenSeOP protocol is the resilience against reprogram
node attacks with malicious code. Thus, the authenticity
of each received program image has to be verified. It
must be guaranteed that all devices solely reprogram
authenticated images of authorized entities. Additionally,
prior to reprogramming, the integrity of received images
must be guaranteed since the assumed attacker may be
able to manipulate data.

e Replay attacks resilience: A secondary goal is the re-
silience against replay attacks. It must be guaranteed
that an attacker cannot replay eavesdropped program
images. Furthermore, the attacker must not be able to
exploit eavesdropped images to reprogram uninvolved
nodes which are not addressed by this image.

e Mitigation of DoS attacks: An additional goal is the
mitigation of DoS attacks. Using cost-intensive ECC
in terms of computational power, it is possible that an
attacker aims for a DoS attack by forcing the verification
of malicious or faked images. This may lead to disrup-
tions of the primary application and to the depletion of
constrained energy resources.

o Compromise-tolerant: Also relevant in terms of security
is compromise tolerance. A single compromised device
must not allow the attacker to compromise other devices
in the WSN.

o Light-weight security solution: Finally, the proposed se-
curity solution has to be light-weight in terms of required
computational power and memory.

IV. DESIGN AND IMPLEMENTATION

In this section, design decisions based on the threat model
and on the security requirements as well as details of the
implementation are presented. Similar to the approaches [5],
[8], [14] discussed in SectionII, we decided to rely on TinyOS
and asymmetric cryptography using public/private key pairs.
The TinyECC library enables us to execute these cryptographic
operations in a sufficient way (runtime of a few seconds).

Following the light-weight approach of NWProg [21] of-
fered by BLIP, a collection of several IP-based protocols in
TinyOS, our implementation is based on Deluge [7] and sup-
ports full and monolithic software updates. In order to make it
light-weight, we replaced the complex dissemination algorithm
with simple propagation. The reason for this replacement is
that the dissemination algorithm is not feasible for scenarios
we consider. Furthermore, it implies a huge memory demand
which is adverse for the primary application with regard to
the constrained memory resources of sensor nodes.

Similar to NWProg, our approach adopts several features
of Deluge, e.g., the fragmentation of the image into a stream
of several pages subdivided into packets, the insertion of
metadata to the program image, the error detection mechanism,
and the flash memory layout using multiple slots.

For the packet-based delivery of the program image, we
adapted the message format from NWProg and extended the
defined commands in order to enable the intended security
mechanisms presented below. Request packets are generated
by the OTAP operator using a python script running on the
server. These packets contain a specific command (CMD), a
slot number (SN), additional information (DATA), and optional
payload. For instance, a WRITE command packet is provoking
the receiver to write the data block included in the payload to
the specified position (DATA) of the image slot defined in the
SN field. An overview of all commands and the corresponding
allocations is provided in Tablel.

Packet header (1+1+2byte) [payload [[remark |

CMD | SN | DATA | optional | |

ERASE | x - - Erasing flash memory slot x.

WRITE X position data Writing data into specified memory
position of slot x.

BOOT X time - Booting of program code stored in slot
x with a certain delay defined in time.

REBOOT| - time - Rebooting of sensor node with a cer-
tain delay defined in time.

WRITE_ | x counter - Initialization of a WRITE stream with

BEGIN a predefined image counter to be
stored in slot x.

WRITE_ | x - signature || Conclusion of a WRITE-packet stream

END associated with slot x and delivery of
the corresponding signature.

TABLE I

SENSEOP PROTOCOL COMMANDS AND THE CORRESPONDING REQUEST
PACKET FORMAT.

Beside the request packets, reply packets (6 bytes) are used
as acknowledgements (ACKSs). Containing the header of the
corresponding request packet (4 bytes), these packets signal
the success of requests with an error field. Since we apply an
Automatic Repeat reQuest (ARQ) mechanism with stop-and-
wait strategy, sequence numbers are required, in particular for
WRITE packets. The memory position stored in the DATA
field of WRITE packets in combination with the slot number
offers a unique identification and, thus, is leveraged as an
implicit sequence number.

A. Security Concept

Our approach is enhanced by digital signatures based on
ECC. Leveraging digital signatures, the protocol is able to
ensure the integrity and authenticity of disseminated code
images. Thus, the SenSeOP protocol has the ability to detect
manipulated and malicious images and prevents their installa-
tion.

Using asymmetric cryptography, our approach is secure
against access node memory attacks since only the public key
is stored on each mote. The only instance disposing of the
private key used to sign new code images is the legitimate
OTAP gateway which is assumed to be tamper-proof. Hence,
the protocol is compromise-tolerant. Based on performance
evaluations of TinyECC, we decide to use a key size of
192 bits since we believe the stronger encryption justifies the
low increase of the computational runtime. However, other
key sizes are supported. Nonetheless, applying signatures to
every packet is impractical due to the computational runtime
of cryptographic operations. Instead, similar to [14] and [5],
our protocol computes a single signature using the SHA-1
hash of the entire program image. In contrast to others,
in our protocol, the cost-intensive cryptographic operation
required by the verification is performed after receiving the
entire packet stream whereas this is done prior to the image
transmission in [14] and [5], causing additional effort.

Via a python script, the WSN operator is able to initiate
an OTAP process indicated by a WRITE_BEGIN packet.
Therefore, on a server, the program image is prepared and
fragmented into a stream of packets. Moreover, the image

is hashed and encrypted with the operator’s private key in
order to create the corresponding signature. To prevent replay
attacks, a version counter is used which allows each client to
distinguish between recent and obsolete versions. For this pur-
pose, the version counter in combination with the destination
address (either a specific node ID or the broadcast address) are
considered in the hash computation as well. In the next step,
subsequent to the initial WRITE_BEGIN, the packet stream is
transmitted in several WRITE packets from the OTAP gateway
to its client(s). While receiving the packet stream, each client
reassembles the packets and instantly performs an iterative
hash computation. Finally, the gateway sends the signature
within a concluding WRITE_END message. After receiving
and reassembling all packets and determining the hash value,
the client verifies the authenticity and integrity of the delivered
program code using this signature and the preinstalled public
key. If the verification is successful, the receiver may boot
the program code as soon as the corresponding BOOT packet
is received. Otherwise, if the verification fails, the received
data is deleted immediately since it is potentially malicious.
Moreover, the SenSeOP module is locked for a predefined
interval of time (currently Smin) as a DoS countermeasure
against possibly following attacks.

B. Selective Reprogramming

Neither Deluge nor NWProg support group-wise selective
reprogramming of a subset of sensor nodes within a WSN.
However, as mentioned in Sectionl, we believe this to be
an inherent requirement of a proper OTAP protocol. For this
reason, we extended our protocol with the ability to perform
efficient selective reprogramming.

Since multicast is not supported natively in IEEE 802.15.4,
we realized selective OTAP by using a specific multicast mode
based on the explicit multicast (Xcast) approach presented
in [2]. While sending a packet to the broadcast destination, an
explicit list containing the unique addresses of the intended
receivers is inserted into the packet header. In order to be able
to distinguish between Xcasts and broadcasts, we replace this
list with the broadcast address Oxf£ff in case of an actual
broadcast.

The explicit receiver list is stored in the optional payload
field of the original NWProg frame and, thus, implies no
revision of the chosen packet format. Indeed, there are two
request packet types already occupying this payload field,
namely WRITE and WRITE_END (cf. TableI). However,
since both request types necessarily follow a corresponding
WRITE_BEGIN packet and each receiver has to maintain
the address list obtained by the WRITE_BEGIN anyway, the
additional transmission of the address list would be redundant
and can be omitted.

V. PERFORMANCE EVALUATION

In this section, the code size and the performance of the
implemented SenSeOP protocol is evaluated for the two sensor
platforms TelosB [17] and G-Node [19] using the 2.4 GHz
and the 868 MHz frequency band, respectively. The goal of

100
90
—~ 80 —
g ol
S 60 T TelosB:
g 50 48 kB ROM
z 40 . 10 kB RAM
S 30 — — — —
QEJ 20 1 [' [| — G-Node:
) b B 1I6KBROM
0 TelosB ROM | TelosB RAM | G-Node ROM | G-Node RAM 8 kB RAM
D security ext. 25,72 20,06 10,57 25,12
O multicast ext. 0,65 0,23 0,24 0,27
BOTAP 41,75 11,04 15,22 9,74
B core system 14,67 5,53 6,33 6,96

Fig. 1. Memory usage of a TinyOS core application enhanced with the
SenSeOP module, depending on the hardware platform (TelosB vs. G-Node).

the performance evaluation is to study the reliability of the
reprogramming operation and to demonstrate the benefit of
selective OTAP using multicast mode. First, we present the
memory footprint. Then, the evaluation setup is described and
the metrics are introduced. Next, we present and discuss the
results obtained by the evaluation. Finally, we compare our
approach with both protocols NWProg and Deluge.

A. Memory Footprint

The code size resulting from our modular SenSeOP protocol
integrated into an exemplary core application is summarized in
Figure 1. For both platforms TelosB and G-Node, the memory
usage is visualized, separated into the basic OTAP component
and optional extensions which are successively added to
the core application. One can observe that the optional but
efficient multicast extension yields only minimal additional
cost. In contrast, the OTAP component as well as the security
extensions cause an inevitable memory demand. However, in
particular for the G-Node platform, which offers more program
memory (ROM), the achieved code size is appropriate for a
deployment in practice since there is enough memory left for
a reasonable application.

B. Setup

In the evaluation, two one-hop topology testbeds are de-
ployed. One testbed is composed of five TelosB nodes in
communication range of each other, whereas the second
testbed consists of G-Nodes. In each testbed, one specific node
attached to the PC and running the TinyOS BaseStation
application is acting as an OTAP gateway. The other four nodes
represent the clients which are intended to be reprogrammed.
Therefore, a test application is preinstalled on these nodes.
This application contains the realized SenSeOP module with
all extensions and a simple blink component. The purpose
of the blink application is to be able to distinguish between
the current and the new application which is supposed to
be installed via OTAP. Therefore, there are two alternative
versions of this test application compiled in advance. Each
version using a different LED color for its blinking. Using
SenSeOP, in each step of the evaluation, the current version
is replaced by its counterpart and vice versa.

As performance metrics, we consider the reliability of the
SenSeOP operation as well as the latency and the overhead
introduced by this protocol:

e Reliability: Aside from the robustness against reprogram-
ming node attacks, the reliability of the SenSeOP protocol
is an important requirement. The reliability is defined as
the success probability of each reprogramming operation,
i.e., whether the reprogramming operation was successful
or not. In particular, a successful reprogramming opera-
tion includes the complete delivery of the new program
image and its signature as well as the verification of its
integrity and its authenticity.

e Latency: The latency of the reprogramming operation
is defined as the period of time between the initial
WRITE_BEGIN packet sent by the OTAP base station
and the reply of the concluding WRITE_END packet
sent by the receiver. As a result, the time required for
the verification and the rebooting of the corresponding
sensor node(s) is not considered by the latency metric.

e Overhead: In order to determine the protocol overhead,
the overall traffic on application layer induced by re-
programming operations is considered. This is done by
summarizing the size of all packets sent during these
operations. This includes all request packets of the base
station and the replies of every receiver. Furthermore, it is
distinguished between control overhead, which is the traf-
fic resulting from control packets and protocol headers,
and the payload, which is associated with the program
image. The latter includes all possible retransmissions
belonging to the program image as well.

C. Results

For the performance evaluation of the SenSeOP protocol,
three independent series of experiments (with ten replications
each) are realized to study the performance of three available
transmission modes. In the unicast mode, the OTAP aims for
reprogramming one specific client, whereas all four clients
are intended to be reprogrammed in the multi- and broadcast
mode. The resulting standard deviations are shown in the
figures using error bars. It is important to note that the
supported data rate as well as the maximum transmission unit
(i.e., the available payload size) depends on the frequency band
and the hardware platform used. In the 2.4 GHz frequency
band (TelosB) the nominal data rate accounts for 250 kB/s and
with TinyOS the maximum payload size is 114 B, whereas
using 868 MHz (G-Node), a nominal data rate of 38.4kB/s
(with Manchester encoding) and a maximum payload size
of 52B is possible. Furthermore, the binary size of the
application image compiled for each platform differs slightly
as well (TelosB: 46.752 kB, G-Node: 44.544 kB). Due to these
differences, the image is fragmented into 487 packets in the
TelosB scenario, whereas 928 packets are necessary using G-
Nodes.

Reliability: We studied the probability of a successfully
performed OTAP operation for both platforms TelosB and G-
Node using each available transmission mode (uni-, multi-, and

400 =
350
300
—_ I R
= 250 H
>
H
g 200 H
<
<
= 150 H
100 H
50 H
31,81| [101,60 127,25 406,41 14139 269,61 89,60 258,35
0 : : :
TelosB G-Node TelosB G-Node TelosB G-Node TelosB G-Node
Unicast Unicast Multicast Broadcast
(1 node) (4 nodes)
Fig. 2. Latency of SenSeOP operations using different transmission modes

(TelosB vs. G-Node).

broadcast). The evaluation confirms that the protocol is 100%
reliable using the unicast or the multicast mode due to the
ARQ mechanism. In contrast, using the broadcast mode, the
possible number of receivers and, thus, the number of expected
replies is unknown. Therefore, a packet retransmission is not
assumed to be required as long as at least one reply message is
received at the OTAP gateway. As a result, if merely a single
packet of the image stream could not be received correctly at a
destination while there exists another destination which returns
a reply, no retransmit is performed. Thus, the integrity of the
image cannot be guaranteed. This situation leads to the poor
reliability of the broadcast mode (TelosB: 52% =+ 13.27%, G-
Node: 26% +12.81%) and is the reason for the high variance.
Moreover, the success probability obtained by both platforms
reflects the ratio of packets required for the image delivery.
In other words, since in the G-Node scenario nearly twice
the amount of packets are transmitted, the error probability
concerning the entire packet stream is higher and, thus, the
success probability is accordingly lower.

Latency: The latency induced by the OTAP operation
(visualized in Figure?2) reflects the difference between the
available data rates. Independent of the transmission mode,
the higher data rate of the 2.4 GHz band (TelosB) allows
for a significantly faster OTAP. The results show that the
multicast mode causes a higher latency than the unicast
mode (I mote). However, with regard to the number of nodes
reprogrammed by the corresponding operation, the multicast
mode clearly outperforms the unicast OTAP. For illustration,
we determine the latency of reprogramming every node in
the testbed using four successive unicast operations, denoted
as Unicast (4 motes) in the figure. Taking the poor reliability
of the broadcast OTAP into account, the multicast mode also
outperforms this mode since a broadcast operation usually has
to be performed several times due to its lower reliability.

Overhead: Finally, the overhead of the realized SenSeOP
protocol was evaluated considering the overall traffic produced
in this setup. The results are presented in Figure 3. Since in

200 ———
1933

36,58

150 —

100 —

17,60

Overall traffic (kB)

50

182,63 84,18

174,17

TelosB G-Node TelosB G-Node
Multicast

TelosB G-Node TelosB G-Node

Unicast Broadcast

(4 nodes)

Unicast
(1 node)

B payload associated with image file Ocontrol overhead

Fig. 3. Overall traffic produced by SenSeOP operations using different
transmission modes (TelosB vs. G-Node).

the G-Node testbed more packets are required for the OTAP, a
larger control overhead is implied due to more reply messages.
Furthermore, the adverse ratio of packet header and payload of
the G-Nodes results in a higher control overhead as well. Both
effects lead to the differences between the control overhead of
TelosB and G-Node shown in Figure 3. It is worth to be noted
that the traffic occurrence corresponding to the payload which
is associated with the image file does not significantly increase
if the multicast or broadcast mode is used instead of unicast
OTAP. Hence, both modes significantly reduce the network
load as well as the energy consumption. The only exception
is given by the results of the multicast mode using the TelosB
hardware. Here, a huge amount of retransmits is required to
achieve the desired reliability. This could be explained by
interference with other communication standards, e.g., WLAN
and Bluetooth operating in the 2.4 GHz frequency band, as
well. Similar to Figure 2, Figure 3 depicts the overall traffic of
four successive unicast operations (Unicast (4 motes)) in order
to emphasize the benefit obtained by the multi- and broadcast
mode.

D. Comparison to related work

In order to compare SenSeOP with NWProg and Deluge, we
consider the overhead and the latency of the reprogramming
again. However, instead of measuring the overhead on applica-
tion layer, the measurement is carried out on the physical layer
taking the link layer ACKs used by NWProg into account. We
apply the same setup described in Section V-B, the maximum
payload size, and the default configuration of the protocols.
Using NWProg and SenSeOP (unicast), we reprogram one
node, whereas all nodes are reprogrammed by Deluge and
SenSeOP (multicast). Due to space limitations, we just present
results for the TelosB testbed.

The results are depicted in Figure4 and show that in the
unicast case, our secure approach achieves better performance
than NWProg which uses link layer ACKs, resulting in a
higher overhead and a higher latency in this scenario. Since our

E 140
e 120 59,60
= 100
€
80 —
& 50,07
= 07 1727 || | 1700 |
5 40] i — -
g 20
45,66 45,70 84,18 47,46
0
SenSeOP NWProg SecOTAP Deluge
(unicast) (multicast)
1 node 4 nodes
¥ payload associated with image file O control overhead
(a) Overall traffic.
140 I
120
@
~ 100
=y
5 80
£ 60
= 40 — — —
20 A
31,81 56,05 141,39 52,07
0 T T T
SenSeOP NWProg SenSeOP Deluge
(unicast) (multicast)
1 node 4 nodes
(b) Latency of OTAP operations.
Fig. 4. Comparison of SenSeOP, NWProg, and Deluge using the TelosB

platform and different transmission modes.

approach cannot guarantee the success of the reprogramming
using broadcast transmission, we use the multicast mode in the
comparison with Deluge. Due to the usage of reply messages
instead of selective negative ACKs, a higher overhead as
well as an increased latency must be tolerated with our
approach, as can be seen in Figure4. However, considering
that our SenSeOP is secure and offers a selective group-wise
reprogramming, the additional costs are acceptable.

VI. CONCLUSION

In this paper, we presented the Selective 'n’ Secure OtaP
protocol (SenSeOP) leveraging ECC as a feasible countermea-
sure against wireless reprogram node attacks. After discussing
related work, introducing the threat model, and presenting our
security goals, details about the design and the implementation
were provided. The rendered performance evaluation demon-
strated the 100% reliability of our SenSeOP approach using
the uni- and multicast mode. Besides the tolerable increase of
latency, the multicast mode offers an appropriate and very effi-
cient selective OTAP approach. The comparison with NWProg
and Deluge showed that our approach outperforms NWProg
and has acceptable additional cost compared to Deluge. In
the future, we plan to extend our approach with multi-hop
support. Due to constrained memory, an efficient multi-hop
dissemination is very challenging, in particular in combination
with the selective OTAP.

REFERENCES

[1] N. Aschenbruck, J. Bauer, J. Bieling, A. Bothe, and M. Schwamborn,
“A Security Architecture and Modular Intrusion Detection System for
WSNSs,” to be published in: Proc. of the 9th International Conference
on Networked Sensing Systems (INSS ’12), Antwerp, Belgium, 2012.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit
Multicast (Xcast) Concepts and Options (RFC 5058),” http://tools.ietf.
org/html/rfc5058 (November 2007).

S. Brown and C. Sreenan, “Updating Software in Wireless Sensor
Networks: A Survey,” Dept. of Computer Science, National Univ. of
Ireland, Maynooth, Tech. Rep, 2006.

Crossbow Technology, Inc., “XNP: Mote In-Network Programming User
Reference,” http://www.tinyos.net/tinyos- 1.x/doc/Xnp.pdf (2003).

P. Dutta, J. Hui, D. Chu, and D. Culler, “Securing the Deluge Network
Programming System,” in Proc. of the 5th Int. Conference on Informa-
tion Processing in Sensor Networks (IPSN ’06), Nashville, TN, USA,
2006, pp. 326-333.

J. Heidemann, T. Stathopoulos, and D. Estrin, “A Remote Code Update
Mechanism for Wireless Sensor Networks,” Technical report, Center for
Embedded Networked Sensing (CENS), University of California, CA,
USA, Tech. Rep., 2003.

J. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale,” in Proc. of the 2nd
Int. Conference on Embedded Networked Sensor Systems (SenSys '04),
Baltimore, MD, USA, 2004, pp. 81-94.

S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and DoS-Resistant
Code Dissemination in Wireless Sensor Networks,” in Proc. of the 7th
Int. Conference on Information Processing in Sensor Networks (IPSN
’08), St. Louis, MO, USA, 2008, pp. 445-456.

J. Jeong and D. Culler, “Incremental Network Programming for Wireless
Sensors,” in Proc. of the Ist Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks
(SECON ’04), Santa Clara, CA, USA, 2004, pp. 25-33.

C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks,” in Proc. of the 2nd Int.
Conference on Embedded Networked Sensor Systems (SenSys ’'04),
Baltimore, MD, USA, 2004, pp. 162-175.

I. Krontiris and T. Dimitriou, “Authenticated In-Network Programming
for Wireless Sensor Networks,” in Proc. of the 5th Int. Conference on Ad-
Hoc Networks & Wireless (ADHOC-NOW °06), Ottawa, Canada, 2006,
pp- 390-403.

S. S. Kulkarni and L. Wang, “MNP: multihop network reprogramming
service for sensor networks,” in Proc. of the 25th Int. Conference on
Distributed Computing Systems (ICDCS ’05), Columbus, OH, USA,
2005, pp. 7 — 16.

P. Lanigan, R. Gandhi, and P. Narasimhan, “Disseminating Code Up-
dates in Sensor Networks: Survey of Protocols and Security Issues,”
Technical report, School of Computer Science, Carnegie Mellon Uni-
versity, PA, USA, Tech. Rep., 2005.

——, “Sluice: Secure Dissemination of Code Updates in Sensor Net-
works,” in Proc. of the 26th Int. Conference on Distributed Computing
Systems (ICDCS ’06), Lisboa, Portugal, 2006, pp. 53-53.

P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks,” in Proc. of the 1st Symposium on Networked Systems Design
and Implementation (NSDI '04), San Francisco, CA, USA, 2004, pp.
15-28.

A. Liu and P. Ning, “TinyECC: Elliptic Curve Cryptography for Sensor
Networks (Version 2.0),” 2011, http://discovery.csc.ncsu.edu/software/
TinyECC.

MEMSIC, “TelosB Data Sheet,” 2011, http://www.memsic.com/support/
documentation/wireless- sensor-networks/category/7-datasheets.html?
download=152.

N. Reijers and K. Langendoen, “Efficient Code Distribution in Wireless
Sensor Networks,” in Proc. of the 2nd ACM Int. Conference on Wireless
Sensor Networks and Applications (WSNA ’03), San Diego, CA, USA,
2003, pp. 60-67.

SOWNet Technologies, “G-Node G301 Wireless Sensor Node,” 2011,
http://www.sownet.nl/download/G301Web.pdf.

H. Tan, D. Ostry, J. Zic, and S. Jha, “A Confidential and DoS-Resistant
Multi-hop Code Dissemination Protocol for Wireless Sensor Networks,”
in Proc. of the 2nd ACM Conference on Wireless Network Security
(WiSec’09), Zurich, Switzerland, 2009, pp. 245-252.

TinyOS Community, “BLIP Tutorial - TinyOS Documentation
Wiki,” 2011, http://docs.tinyos.net/tinywiki/index.php/BLIP_Tutorial#
Network_Programming.

Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming Wireless Sensor
Networks: Challenges and Approaches,” Network, IEEE, vol. 20, no. 3,
pp. 48-55, 2006.

