
Let’s Move:
Adding Arbitrary Mobility to WSN Testbeds
Nils Aschenbruck∗•, Jan Bauer◦, Jakob Bieling◦, Alexander Bothe◦, and Matthias Schwamborn∗

∗University of Osnabrück - Institute of Computer Science
Albrechtstr. 28, 49076 Osnabrück, Germany

{aschenbruck, schwamborn}@informatik.uos.de
◦University of Bonn - Institute of Computer Science 4

•Fraunhofer FKIE
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

{bauer, bieling, bothea}@cs.uni-bonn.de

Abstract—Research in the area of Wireless Sensor Networks
(WSNs) has been immense during the last years. Since highly
resource-constrained, WSNs pose specific challenges to the design
and implementation of protocols and algorithms. In order to
test, compare, and verify the intended functionality of new
approaches, performance evaluations must be conducted in a
sound and credible manner. Instead of simulative evaluation,
the WSN research community has mostly shown a preference
towards experimental evaluation. Being especially important for
the evaluation of routing protocols, node mobility is one of the
more complex features to facilitate in testbeds. Robots have been
the most common means for moving nodes so far, which, however,
introduces more costs and limits reproducibility, scalability, and
mobility patterns. We present a new software-based approach
that essentially combines mobility modeling with link control.
Mobility patterns taken from the mobility scenario generator
BonnMotion are converted and replayed to create a virtual
dynamic topology. Our approach drastically reduces costs, makes
mobility reproducible and scalable, and enables the use of a
variety of mobility models.

Index Terms—Mobile communication; Performance evalua-
tion; Wireless sensor networks

I. INTRODUCTION

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICCCN.2012.6289190

Wireless Sensor Networks (WSNs) are known as wireless
multi-hop networks composed of small sensor devices that
monitor changes of some measurable phenomenon, e.g., light,
temperature, or movement. Applications of WSNs range from
military (e.g., security perimeter surveillance) over civilian
(e.g., disaster area monitoring) to industrial (e.g., industrial
process control). In contrast to notebooks and smartphones,
embedded sensor nodes (motes) are highly constrained by pro-
cessing power, memory, battery power, and network capacity.
Therefore, specific challenges arise in the design and imple-
mentation of protocols and algorithms (for a comprehensive
overview, see [2], [22]): Code size and energy-efficiency are
two of the major concerns in WSNs since program memory is
limited to only a few kilobytes and most WSN deployments
are designed for maximum network life-time.

Since Mobile Ad hoc NETwork (MANET) protocols were
not designed with the above-mentioned requirements in mind,
their use in WSNs is quite limited. Therefore, the research
community has focused on the development of new protocols

at all layers tailored to meet these requirements. In order
to test, compare, and verify the intended functionality of
these new approaches, performance evaluations need to be
conducted in a sound and credible manner.

Even though testbed research and development was con-
ducted by the MANET community (cf. [8], [13]), simulation
has been chosen most commonly for performance evaluation.
In the WSN research community, however, experimental eval-
uation with real motes is preferred. One of the more complex
features to integrate into a testbed is node mobility, which
is especially important for the evaluation of routing protocols.
The need for cost reduction, reproducibility, and realism makes
it even more challenging. Robot movement has been the most
prominent approach to integrate mobility into WSN testbeds
so far (cf. Section II). This leads to extra costs, extra hardware
maintenance, and movement is limited by the capabilities
of the robots. Further limitations concern reproducibility and
scalability.

We propose a new software-based approach that essentially
combines mobility modeling with link control. The physical
testbed remains static, i.e., no physical movement of nodes
is involved. Instead, the idea is to apply the mobility-induced
dynamic topology with dynamic link control. Mobility patterns
are taken from the mobility scenario generation and analysis
tool BonnMotion [3], which means that every implemented
mobility model can be utilized. Our approach drastically
reduces costs, makes mobility reproducible and scalable, and
enables the use of a variety of mobility models.

The rest of this paper is structured as follows. First, we
discuss related work found in the literature on mobility in
testbeds in Section II. Then, a detailed description of our
virtual mobility approach in Section III follows. In Section IV,
we present some evaluation results achieved with our im-
plementation. Finally, we conclude the paper and point out
directions for future work in Section V.

II. RELATED WORK

Integrating mobility into testbeds has been a challenging
issue at least since the emergence of the first MANET
testbeds [8]. In the Ad hoc Protocol Evaluation (APE)



TABLE I
SURVEY OF WSN TESTBEDS CONCERNING MOBILITY INTEGRATION.

Testbed Application Mote Mobility
BWN-Lab [1] multimedia communication MicaZ Acroname Garcia robot

re
al

m
ob

ili
ty

Explorebots [6] general purpose (indoor) Mica2 Rogue ATV robot
Robomote [7] general purpose (indoor) Mica2 Robomote robot

Kansei [9] large-scale sensing
TelosB

Acroname robotTrio
XSM

Mobile Emulab [12] general purpose (indoor) Mica2 Acroname Garcia robot

TWiNS.KOM [19] smart heterogeneous networking SunSPOT moving object or personTelosB

testbed [14], [15], laptops are carried around by people within
a specified campus environment. Mobility scenarios are real-
ized through choreographed testruns, i.e., each person carrying
a laptop gets individual message popups indicating their move-
ment behavior (e.g., “Stay at this location. (30 sec).”). Another
approach to testbed mobility is pursued by Netbed [20], where
passive couriers (busses and students) carry around mobile
devices. For these approaches, scalability is a challenge since
an appropriate number of node carriers is required.

In [13], mobility integration is categorized into three differ-
ent abstraction levels:

• Real mobility: This is the lowest level of abstraction.
Physical node positions are changed by manual move-
ment (human carriers), by automatic movement (robots),
or by switching between antennas of fixed location. Ap-
propriate regulation of radio transmission powers might
also be involved, otherwise enough space for multi-hop
topologies is needed. Common drawbacks are lack of
scalability and reproducibility.

• Channel emulation: This is a medium level of abstraction.
Testbed nodes are stationary and radio signals are artifi-
cially altered to reflect the signal propagation properties
of a radio channel according to the considered mobility
scenario. This usually involves usage of special hardware
components like switches, multiplexers, or attenuators.
Channel emulation can be considered as a trade-off
between realism and reproducibility.

• Logical connectivity: The highest level of abstraction is
achieved by reducing the impact of mobility on wireless
links to logical connectivity. The dynamic topology can
be described by a time-variant connectivity matrix, which
is the result of applying a signal propagation model to
the mobility scenario description. This makes mobility
much more controllable and reproducible. However, the
reduction to logical connectivity also involves the loss of
accuracy in link dynamics.

Note that even though this classification is based on
MANET testbeds, it is generic enough to be applied to WSNs.

In WSN testbeds, mobility is mostly realized by robotic
movement: Table I contains a survey of different WSN
testbeds with mobility support, including application scenario,
deployed mote platforms and mobility concept. BWN-Lab [1],
Explorebots [6], Robomote [7], Kansei [9], and Mobile Em-
ulab [12] realize mobility by robotic movement, where the
Acroname Garcia platform seems to be a popular choice.

Reinhardt et al. [19] also mention robotic movement as a
possible approach for their TWiNS.KOM testbed, but did
not implement it. Instead, they rely on moving objects or
persons. According to the classification by Kropff et al. [13],
as described above, these six testbeds use the real mobility
abstraction level.

Robotic movement might in fact be a good choice if the user
wants to control node movement during an experiment and
still obtain reproducible results to a certain degree. Another
benefit is that robots can move in reaction to certain events,
which cannot always be pre-computed. However, robots also
mean additional costs, additional hardware maintenance, and
movement is limited by their capabilities. Furthermore, repro-
ducibility and scalability are also limited and the overhead to
program and control them should not be neglected.

Also related to our work is the Virtual Mobility Overlay
(ViMobiO) for WSN testbeds by Puccinelli et al. [18]. Based
on an idea first mentioned in the context of the ORBIT
testbed for MANETs [17], they propose an overlay scheme
that enables virtual mobility by transferring state information
of logical nodes between physical nodes. The positions of the
physical nodes predefine the waypoints of the logical nodes.
Virtual movement of a logical node l from waypoint w1 to w2

is equal to transferring the state of l from physical node p1
to p2, where w1 and w2 are the positions of p1 and p2,
respectively. Since state information as well as regular data
packets are sent over the wireless channel, time is divided
into epochs consisting of a period for regular traffic and a
period for state traffic to clearly separate one from the other.
Moving state of l from p1 to p2 is only possible if

(1) there is no other logical node occupying p2 and
(2) p2 is listed in the neighbor table of p1.

(1) has several implications: First, it means that there may be
no more than one logical node occupying a physical node at
a time. Second, the number of logical nodes must be signifi-
cantly smaller than the number of physical nodes. Otherwise,
logical nodes would restrict each other’s movement or even
deadlock states might occur. Finally, the mobility patterns of
nodes are not independent of each other. Requirement (2)
further restricts movement since logical nodes cannot move
to a physical node multiple hops away without visiting the
hops in between.

Another drawback of ViMobiO is the interruption of regular
code execution during the state transfer phase of each epoch.
Since there usually is no interruption of application code in a



Gateway

Testbed

BonnMotion

WiseML 
file

Link Control 
Server

Fig. 1. Virtual mobility concept.

real network deployment, this should have significant impact
on the experiment’s results. Nevertheless, the authors neither
explain the handling of this code interruption nor present any
results on its impact.

Our approach to virtual mobility differs fundamentally from
ViMobiO. Instead of having a network overlay with a subset
of nodes, our approach can be considered as using an overlay
with a different set of links. Moreover, it supports arbitrary
mobility patterns and does not interrupt the execution of
application code.

III. VIRTUAL MOBILITY

We propose a novel virtual mobility approach based on link
control to enable arbitrary mobility patterns in a static WSN
testbed. Speaking in terms of the aforementioned mobility
classification [13], with our approach, we apply the logical
connectivity abstraction level. The basic idea is to generate a
dynamic topology description with a mobility scenario gener-
ator tool and use this as input for the link control. The link
control then enables or disables links during an experiment
according to the description. This way, virtual movement can
be achieved while the nodes remain physically static. Overall,
this approach has several benefits:

(1) No extra costs for additional hardware (incl. mainte-
nance),

(2) no need for node carriers,
(3) reproducibility,
(4) scalability, and
(5) utilization of commonly used and realistic mobility

models.
The different parts of our virtual mobility concept are

depicted in Figure 1. The first step is to use the mobility
scenario generation and analysis tool BonnMotion [3], [5]
for generating a mobility scenario in form of a dynamic
topology description (Section III-A). The generated descrip-
tion is then available in form of a WiseML-compliant file.
This file includes the dynamic topology description which
can be interpreted by the Link Control Server (LCS), the
central coordinator for link control (Section III-B). Via serial
connection, the LCS sends link change commands to a mote
gateway. Finally, this gateway forwards the commands over
the wireless channel to the WSN testbed.

A. BonnMotion

BonnMotion is an open-source Java software tool for the
generation and analysis of mobility scenarios. It supports
multiple random-based as well as scenario-specific mobility

models (for a complete list, see [5]). Node movement is
natively stored in the form of waypoints. A waypoint can be
defined as a triple (id, time, pos), where
• id is the node ID,
• time is the (simulation) time relative to the beginning of

the scenario, and
• pos is the position of the node within the specified

simulation area.
The complete trajectory of a mobile node can be determined by
connecting every two chronologically subsequent waypoints of
the same node with a straight line.

The waypoint description of a mobility scenario is fre-
quently used for network simulations. For the link control
concept, however, we need a dynamic topology description,
i.e., information about link establishment and link break.
Therefore, we compute so-called contacts (commonly con-
sidered in the field of opportunistic networks), which denote
encounters of two nodes with respect to some predefined
communication range. A link between two nodes n1 and
n2 is considered as established as soon as n2 enters the
communication range of n1. Likewise, it is considered as
broken as soon as n2 leaves the communication range of
n1. The time difference between link establishment and link
break is then called contact duration. All nodes share the
same communication range, resulting in symmetric links. Link
asymmetry is supported by WiseML as well as by the LCS, but
we consider link asymmetry and (being related) more complex
signal propagation models as out of scope for this paper.

WiseML [21] is a scenario and experiment specification
language for WSNs that is based on GraphML, an XML
dialect. It is also used by Baumgartner et al. for creating
virtual testbed federations with virtual links [4]. The topology
edges are defined by enableLink/disableLink XML
elements, both with source and target attributes for uni-
directional links support.

In order to specify the dynamic topologies resulting from
mobility scenarios generated with BonnMotion, we extended
the WiseML exporter of BonnMotion version 1.5a to compute
contacts and support contact-based output. The contact-based
extension reports the link status every time there is a change in
the topology according to the user-defined transmission range.
At the beginning of the mobility scenario, links are disabled
or enabled depending on the initial topology. Whenever there
is a link change between two nodes n1 and n2, the following
information is written to the WiseML file:
• Time of the link change event,
• position of both nodes at this time within the simulation

area,
• corresponding XML element for link enabling or dis-

abling, once for each link direction (n1 → n2 and
n2 → n1).

At the end of the mobility scenario, all links are disabled such
that all communication is stopped.

Converting the waypoint-based format to the contact-based
format is basically a reduction of complete node trajectories to



AMSend

LinkControlSendC

AMSend

AMQueueEntryP

AMSend[am_id_t]

Packet

ActiveMessageC

Packet

AMPacket

AMPacket

Acks

PacketAcknowledgementsAMPacket

AMQueueP

Send

(a) DirectAMSenderC

Packet

ActiveMessageC

Packet

Receive

LinkControlRecvC

Receive

Receive[am_id_t]

AMPacket

AMPacket

(b) AMReceiverC

Fig. 2. Integration of link control layer into TinyOS base code.

the impact of node mobility on the wireless links. This is ac-
companied by loss of information on fine-grained movement,
i.e., loss of accuracy in link dynamics. However, this is an
inherent drawback of the logical connectivity abstraction level
and is traded in for more control, reproducibility, and ease of
use.

B. Link Control

We wrote a TinyOS [11] link control implementation for
enabling and disabling physical links. In order to obtain
arbitrary virtual topologies with this approach, we assume a
fully connected testbed. We don’t consider arbitrary physical
topologies of the testbed since they are hard to create and
maintain due to fading effects and might change over time.
The implementation consists of three parts (cf. Figure 1):
Server (LCS), gateway, and clients (testbed), i.e., the actual
network to run experiments on. The LCS is a Java program
responsible for reading and replaying the WiseML-formatted
mobility scenario input by disseminating the corresponding
commands. The gateway mote is the interface between clients
and server. It passes packets it receives from the server via
serial connection to the clients via wireless radio and vice
versa. We used the BaseStation application available in the
TinyOS distribution since it already provides this functionality.
The clients receive, process, and acknowledge the commands
sent by the server.

An experiment using virtual mobility works as follows.
Initially, all link changes in the WiseML file containing the
mobility scenario are scheduled according to their timestamps
by the LCS. When a link change event concerning n1 → n2

is due, it is transmitted to the gateway via serial connection
(UART) in the form of two enablePhysicalLink or two
disablePhysicalLink commands, respectively. The uni-
directional link change results in two commands (one for n1

and one for n2) since every client maintains one list for each
link direction. However, since we consider symmetric links
only here, we combined incoming and outgoing link change
commands (with the same timestamp): Instead of sending a
command for n1 → n2 and n1 ← n2 separately, we only
send a command for n1 ↔ n2. The gateway then sends
these control packets to the corresponding nodes (n1 and n2)
via single-hop on the wireless channel. Especially the initial
virtual topology dissemination introduces a lot of control
packets. In order to avoid potential traffic congestion, the
server applies a minimum pause time between the transmission

of two consecutive packets. As soon as a client node receives
a link control command, it edits its whitelist for incoming or
outgoing links, respectively. A response is sent back to the
server for confirmation. We opted for wireless transmission of
control data mainly for two reasons: Not having to rely on
wired connections makes the testbed much more flexible. The
other reason is that not all mote platforms are equipped with a
USB connector. Some need an extra gateway module for this
which increases cost of the testbed. Note, however, that this
also introduces potential interference with regular data traffic.

As already mentioned, each client maintains two whitelists:
One for incoming links and one for outgoing links. Both
whitelists are initially empty, such that only broadcast mes-
sages can be sent and control packets from the gateway can
be received. Node addresses are added and deleted during
the experiment, depending on the link control command. If
a unicast data packet is to be sent to a receiver which is not
listed in the outgoing links whitelist, the most significant bit
of the destination address is set (we assume that this bit is
0 in regular addresses). The modified packet is transmitted
but the original destination never reached. On one hand, this
ensures that the disabled link to the receiver is in fact not
used. On the other hand, it still causes interference which is
also caused by real node movement: A real mobile node does
not abruptly stop the retransmission of a packet if it moves
out of the receiver’s transmission range. If a packet (unicast or
broadcast) is received from a source node which is not listed
in the incoming links whitelist, it is dropped. An exception to
this rule are link control packets, which are always processed.

The main part of the code is implemented as a library.
Based on the TinyOS wiring concept, the link control layer
can be easily switched on and off with a compiler flag.
From the TinyOS (v2.1.1) base code, we only had to modify
DirectAMSenderC and AMReceiverC (see Figure 2).
We configured DirectAMSenderC to use the link con-
trol sender module (LinkControlSendC) as a filter layer
for outgoing packets (cf. Figure 2a). Likewise, we config-
ured AMReceiverC to use the link control receiver mod-
ule (LinkControlRecvC) as a filter layer for incoming
packets (cf. Figure 2b). This wiring ensures that the link
control layer is transparent to higher layers. Furthermore, since
no hardware-specific code was touched, our implementation
works for all hardware platforms supported by TinyOS.

IV. EVALUATION

We experimentally evaluated our virtual mobility approach
in our WSN testbed. The goal of the evaluation is to examine

• if higher layers are affected by the link control layer,
• if mobility can be reproduced,
• how large the control packet overhead is, and
• how large the link control transmission delay is.

We will first explain the evaluation scenario setup and then
present and discuss the results.



1 2 3 4 B

1 1
3m/s

Fig. 3. Mobility scenario used in the evaluation.

1

2

3

4

B

(a) Physical

1

2

3

4

B

(b) Logical

1

2

3

4

B

(c) Virtual

Fig. 4. Comparison of different topology contexts in the evaluation scenario.

A. Setup

Starting with the mobility scenario, we chose a chain
topology with one mobile node (cf. Figure 3). We opted for
this simple scenario since it makes it easier to comprehend the
impact of mobility on the network. It consists of four regular
nodes (1-4) and a base station (B). As shown in Figure 3, they
are aligned as a chain with order 1, 2, 3, 4, B. After an initial
wait phase of 20 s, node 1 begins to move along the chain
towards node B as indicated by the dotted lines. When it has
reached the waypoint position above node B (indicated by the
small dotted circle), it moves back along the same way to its
original position. The speed of node 1 is 3 m/s and the distance
between two neighboring nodes is 50 m. Node 1 returns to
its original position at 157.3 s. The mobility scenario ends at
180 s such that there are more than 20 s at the end where
the topology is static again. We convert the waypoint-based
format of the scenario to contact-based WiseML and choose a
transmission range of 50 m. This leads to the desired chain
topology, where a wireless link only exists between direct
neighbors.

We use the TelosB mote platform to run our experiments
on. The positioning of the five nodes in our testbed lab looks
similar to the one in Figure 4. Since the nodes are close to each
other, the network is fully connected, i.e., wireless links exist
between each pair of nodes. Therefore, the physical topology
looks like Figure 4a. All nodes run TinyOS v2.1.1 with a
simple sensor data collect application called WSNCollect.
It uses the tree-based Collection Tree Protocol (CTP) [10] for
routing. Node B functions as the root node, while node 1
transmits sensor data packets with a sampling interval of 1 s.
Nodes 2-4 simply forward packets towards B and do not
generate own traffic. Using WSNCollect without the virtual
mobility scenario would result in a 1-hop tree structure due
to CTP routing and high quality links. This logical topology
is shown in Figure 4b. Applying the virtual mobility scenario

TABLE II
CODE SIZE OF LINK CONTROL CLIENT IMPLEMENTATION ON TELOSB

MOTES.

Application ROM RAM
WSNCollect (incl. Link Control) 24 948 B 3638 B
WSNCollect 23 862 B 3046 B
Link Control only 1086 B 592 B

yields the desired chain-like virtual topology in Figure 4c.
In addition to the five nodes, we used another TelosB mote

running the TinyOS BaseStation application (gateway
node) and a laptop running the LCS. A Jackdaw IEEE 802.15.4
sniffer enabled us to capture the packets transmitted over the
air using the packet analyzer Wireshark (for details, see [16]).
The gateway as well as the sniffer were placed near node B.

During first experiment runs, we noticed that the Trickle
timer as part of CTP does not work well with dynamic
topologies. It is responsible for timing the transmission of
CTP routing beacons. These beacons are required for neighbor
discovery and routing table updates. Since the Trickle timer
basically has exponential growth and a default maximum value
of 512 s, neighbor discovery can be slow. If, in our mobility
scenario (cf. Figure 3), node 1 moves within transmission
range of, e.g., node 3, it may well be out of range again
before the Trickle timer of node 3 fires. The result is that
node 1 misses the chance to discover node 3 and choose it as
its new parent. Instead, it still tries to send its data packets to
node 2, which is, however, long out of range. To solve this
problem, we disabled the Trickle timer and implemented a
simple periodic timer with a period of 2 s instead.

B. Results

As mentioned earlier, the link control layer can be
switched on and off using a compiler flag. We compiled the
WSNCollect application with and without the layer to get an
exact value of the code size. Table II shows the resulting code
sizes in terms of ROM and RAM on the TelosB platform.
Our link control implementation has a small code footprint
of 1086 B in ROM and 592 B in RAM. RAM usage can be
further decreased by defining a smaller whitelist size in the
code (default is 64 links per whitelist).

For the evaluation, we ran 10 replications of the scenario
described in the previous subsection. All of the results were
calculated by parsing the Wireshark traces and processing
timestamps of the LCS. As a first metric, we consider the
“parent” field in the CTP routing packets. The parent of a
node is the next hop towards the root. Therefore, we expect
mobile node 1 to change its parent accordingly as it moves
towards root node B. The step plot in Figure 5a shows the
parent of node 1 at a specific time as broadcasted in its periodic
routing packets. As expected, the parent changes from node 2
to 3, 4, and finally B as the node moves along the chain. It
changes again in reverse order as node 1 moves back to its
original position. Replications have been plotted with different
line types and can be made out as displaced vertical lines
at parent change times. These displacements indicate that the



time [s]

C
T

P
 p

ar
en

t

B

4

3

2

0 20 40 60 80 100 120 140 160 180

(a) Parent

time [s]

C
T

P
 T

H
L

0

1

2

3

0 20 40 60 80 100 120 140 160 180

(b) THL

Fig. 5. CTP packet field entries verifying the intended mobility pattern.

parent change times vary between replications, which is mostly
due to the varying wireless channel.

Closely related to the parent field in the context of the
considered mobility scenario, the CTP Time Has Lived (THL)
field denotes the number of hops a data packet has traversed so
far. We examined the THL field for each data packet received
by root node B. Since node 1 is the only node sending data
packets, the THL values should coincide with the parent field
entries. Therefore, we also show the THL with a step plot
(see Figure 5b). As expected, the number of hops decreases
from 3 (parent node 2) to 0 (parent node B) as node 1 moves
towards B. It increases again as the mobile node moves away
from the root node towards the other end of the chain. Again,
we can distinguish between replications by displacements at
THL change times.

The evaluation of both considered CTP fields shows that the
mobility pattern was carried out as intended. Thus, the link
control layer is transparent to higher layers and these layers
work as expected. Furthermore, the mobility scenario can be
reproduced within the bounds of wireless channel fluctuation
affecting the control communication.

Next, we evaluate the control packet overhead introduced
by the LCS. For this purpose, we calculated the sum of
control packet sizes within intervals of 5 s for each replication.
The resulting packet overhead in bytes per 5 s is shown in
Figure 6a. Replications have been aggregated to mean and
standard deviation (error bars). As expected, the initial virtual
topology dissemination (up to 10 s) introduces a lot of control
communication. However, since the initial phase of a network
performance evaluation is usually cut off anyway (also done
in Figure 5), the initial overhead can be neglected. After
the initial dissemination, the overhead does not increase any
further until node 1 moves into transmission range of node 3.
From there on, the control overhead increases on a regular
basis every time a new link change occurs according to the
movement along the chain. The overhead decreases as soon
as the mobile node returns to its original position. Overall,

apart from the initial phase, the control overhead is well below
80 B/5s (16 B/s), which is negligible considering the IEEE
802.15.4 data rate of 250 kbps.

As a final metric, we consider the delay of the control
communication in form of the Round-Trip Time (RTT), i.e.,
the time between submission of a link control command
and reception of the corresponding response. We calculated
the RTT on application level for each link change in all
replications and cut off samples corresponding to the initial
phase of 10 s. The remaining samples result in the Empirical
Cumulative Distribution Function (ECDF) shown in Figure 6b.
The RTT values vary between 15.02 ms and 38.78 ms with a
mean of 23.36 ms. This order of magnitude for the delay is
negligible for most mobility scenarios since the impact of even
lower inter link change times for a single node on routing
performance is insignificant.

V. CONCLUSION

We presented a new software-based approach to enable
arbitrary virtual mobility in a static WSN testbed. Mobility
modeling and link control are combined to create a mobility-
induced dynamic topology. We have shown that our approach
leaves a small code footprint, makes mobility reproducible,
and the control communication introduces negligible overhead
in terms of size and delay. Moreover, it drastically reduces
costs, makes mobility scalable, and enables the use of a variety
of mobility models.

In the future, we want to improve some aspects of the
virtual mobility. E.g., the use of more realistic signal prop-
agation models should increase accuracy of link dynamics.
Furthermore, we are planning to evaluate various protocols
and algorithms in different mobility scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Office for Information Security (BSI). Furthermore, this work
was supported in part by CONET, the Cooperating Objects



●

●

● ● ● ● ● ● ●

●

●

● ●

●

● ●

● ●

●
●

●

● ●

●

● ●

● ●

●

● ● ● ● ● ● ●

●

time [s]

co
nt

ro
l p

ac
ke

t o
ve

rh
ea

d 
[B

/5
s]

0 20 40 60 80 100 120 140 160 180

0

50

100

150

200

250

300

●

●

● ● ● ● ● ● ●

●

●

● ●

●

● ●

● ●

●
●

●

● ●

●

● ●

● ●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

● ●

●

● ●

● ●

●
●

●

● ●

●

● ●

● ●

●

● ● ● ● ● ● ●

●

(a) Overhead

10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

RTT [ms]

● ●●
●●
●● ●●

●●●
●●●

●●
●●

●●
●●
●●

●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●
●●
●●
●●

●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●

●●
● ●●

●●
●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●

●●
●●

●●
●●
●●

●●●●
●●●

● ●●
●● ● ●

cu
m

ul
at

iv
e 

re
la

tiv
e 

fr
eq

ue
nc

y

(b) RTT

Fig. 6. LCS control packet overhead and RTT.

Network of Excellence, funded by the European Commission
under FP7 with contract number FP7-2007-2-224053. The
authors would like to thank the WSNLab and CONET project
teams for feedback, sustainable discussion, and work.

REFERENCES

[1] I. Akyildiz, T. Melodia, and K. Chowdhury, “Wireless Multimedia
Sensor Networks: Applications and Testbeds,” Proc. IEEE, vol. 96,
no. 10, pp. 1588–1605, 2008.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
Sensor Networks: A Survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, 2002.

[3] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,
“BonnMotion - A Mobility Scenario Generation and Analysis Tool,” in
Proc. of the 3rd Int. Conference on Simulation Tools and Techniques
(SIMUTools ’10), Torremolinos, Malaga, Spain, 2010, pp. 1–10.

[4] T. Baumgartner, I. Chatzigiannakis, M. Danckwardt, C. Koninis,
A. Kröller, G. Mylonas, D. Pfisterer, and B. Porter, “Virtualising
Testbeds to Support Large-Scale Reconfigurable Experimental Facil-
ities,” in Proc. of the 7th European Conference on Wireless Sensor
Networks (EWSN ’10), Coimbra, Portugal, 2010, pp. 210–223.

[5] BonnMotion Developers, “BonnMotion - A Mobility Scenario
Generation and Analysis Tool,” 2011. [Online]. Available:
http://bonnmotion.net.cs.uni-bonn.de/

[6] T. Dahlberg, A. Nasipuri, and C. Taylor, “Explorebots: A Mobile
Network Experimentation Testbed,” in Proc. of the Annual Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’05), Philadelphia, PA, USA, 2005, pp. 76–81.

[7] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. Sukhatme,
“Robomote: Enabling Mobility in Sensor Networks,” in Proc. of the 4th
Int. Conference on Information Processing in Sensor Networks (IPSN
’05), Los Angeles, CA, USA, 2005, pp. 404–409.

[8] P. De, A. Raniwala, S. Sharma, and T. Chiueh, “Design Considerations
for a Multihop Wireless Network Testbed,” IEEE Commun. Mag.,
vol. 43, no. 10, pp. 102–109, 2005.

[9] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat,
V. Kulathumani, M. Sridharan, H. Zhang, and H. Cao, “Kansei: A
Testbed for Sensing at Scale,” in Proc. of the 5th Int. Conference
on Information Processing in Sensor Networks (IPSN/SPOTS ’06),
Nashville, TN, USA, 2006, pp. 399–406.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
Tree Protocol,” in Proc. of the 7th Int. Conference on Embedded
Networked Sensor Systems (SenSys ’09), Berkeley, CA, USA, 2009, pp.
1–14.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System Architecture Directions for Networked Sensors,” SIGPLAN
Not., vol. 35, pp. 93–104, November 2000.

[12] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and
J. Lepreau, “Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed,” in Proc. of the 25th Conference on Computer Communications
(INFOCOM ’06), Barcelona, Spain, 2006, pp. 1–12.

[13] M. Kropff, T. Krop, M. Hollick, P. Mogre, and R. Steinmetz, “A
Survey on Real World and Emulation Testbeds for Mobile Ad hoc
Networks,” in Proc. of the 2nd Int. Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TRIDENTCOM ’06), Barcelona, Spain, 2006, pp. 448–453.

[14] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordström, and C. Tschudin,
“A Large-scale Testbed for Reproducible Ad hoc Protocol Evaluations,”
in Proc. of the Wireless Communications and Networking Conference
(WCNC ’02), Orlando, FL, USA, 2002, pp. 412–418.

[15] E. Nordström, P. Gunningberg, and H. Lundgren, “A Testbed and
Methodology for Experimental Evaluation of Wireless Mobile Ad hoc
Networks,” in Proc. of the 1st Int. Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TRIDENTCOM ’05), Trento, Italy, 2005, pp. 100–109.

[16] C. O’Flynn, “RZRAVEN USB Stick (Jackdaw),” 2011. [Online].
Available: http://www.sics.se/∼adam/contiki/docs-uipv6/a01108.html

[17] M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “ORBIT Testbed
Software Architecture: Supporting Experiments as a Service,” in Proc.
of the 1st Int. Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TRIDENTCOM ’05),
Trento, Italy, 2005, pp. 136–145.

[18] D. Puccinelli and S. Giordano, “ViMobiO: Virtual Mobility Overlay for
Static Sensor Network Testbeds,” in Proc. of the 10th Int. Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM
’09), Kos, Greece, 2009, pp. 1–6.

[19] A. Reinhardt, M. Kropff, M. Hollick, and R. Steinmetz, “Designing
a Sensor Network Testbed for Smart Heterogeneous Applications,” in
Proc. of the 33rd Conference on Local Computer Networks (LCN ’08),
Montreal, Quebec, Canada, 2008, pp. 715–722.

[20] B. White, J. Lepreau, and S. Guruprasad, “Lowering the Barrier to
Wireless and Mobile Experimentation,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 47–52, 2003.

[21] WISEBED Project Partners, “WiseML Schema Version 2.1,”
2011. [Online]. Available: http://dutigw.st.ewi.tudelft.nl/wiseml/wiseml
schema.pdf

[22] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless Sensor Network
Survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.


